dask.dataframe.groupby.DataFrameGroupBy.bfill
dask.dataframe.groupby.DataFrameGroupBy.bfill¶
- DataFrameGroupBy.bfill(limit=None)¶
Backward fill the values.
This docstring was copied from pandas.core.groupby.groupby.GroupBy.bfill.
Some inconsistencies with the Dask version may exist.
- Parameters
- limitint, optional
Limit of how many values to fill.
- Returns
- Series or DataFrame
Object with missing values filled.
See also
Series.bfill
Backward fill the missing values in the dataset.
DataFrame.bfill
Backward fill the missing values in the dataset.
Series.fillna
Fill NaN values of a Series.
DataFrame.fillna
Fill NaN values of a DataFrame.
Examples
With Series:
>>> index = ['Falcon', 'Falcon', 'Parrot', 'Parrot', 'Parrot'] >>> s = pd.Series([None, 1, None, None, 3], index=index) >>> s Falcon NaN Falcon 1.0 Parrot NaN Parrot NaN Parrot 3.0 dtype: float64 >>> s.groupby(level=0).bfill() Falcon 1.0 Falcon 1.0 Parrot 3.0 Parrot 3.0 Parrot 3.0 dtype: float64 >>> s.groupby(level=0).bfill(limit=1) Falcon 1.0 Falcon 1.0 Parrot NaN Parrot 3.0 Parrot 3.0 dtype: float64
With DataFrame:
>>> df = pd.DataFrame({'A': [1, None, None, None, 4], ... 'B': [None, None, 5, None, 7]}, index=index) >>> df A B Falcon 1.0 NaN Falcon NaN NaN Parrot NaN 5.0 Parrot NaN NaN Parrot 4.0 7.0 >>> df.groupby(level=0).bfill() A B Falcon 1.0 NaN Falcon NaN NaN Parrot 4.0 5.0 Parrot 4.0 7.0 Parrot 4.0 7.0 >>> df.groupby(level=0).bfill(limit=1) A B Falcon 1.0 NaN Falcon NaN NaN Parrot NaN 5.0 Parrot 4.0 7.0 Parrot 4.0 7.0