Source code for dask_expr._groupby

import functools
import math
import warnings
from collections.abc import Callable

import numpy as np
import pandas as pd
from dask import is_dask_collection
from dask._task_spec import Task
from dask.core import flatten
from dask.dataframe.core import (
    GROUP_KEYS_DEFAULT,
    _concat,
    apply_and_enforce,
    is_dataframe_like,
    is_series_like,
)
from dask.dataframe.dispatch import concat, make_meta, meta_nonempty
from dask.dataframe.groupby import (
    _agg_finalize,
    _aggregate_docstring,
    _apply_chunk,
    _build_agg_args,
    _cov_agg,
    _cov_chunk,
    _cum_agg_aligned,
    _cum_agg_filled,
    _cumcount_aggregate,
    _determine_levels,
    _groupby_aggregate,
    _groupby_aggregate_spec,
    _groupby_apply_funcs,
    _groupby_get_group,
    _groupby_raise_unaligned,
    _groupby_slice_apply,
    _groupby_slice_shift,
    _groupby_slice_transform,
    _head_aggregate,
    _head_chunk,
    _non_agg_chunk,
    _normalize_spec,
    _nunique_df_chunk,
    _nunique_df_combine,
    _tail_aggregate,
    _tail_chunk,
    _unique_aggregate,
    _value_counts,
    _value_counts_aggregate,
    _var_agg,
    _var_chunk,
)
from dask.dataframe.utils import insert_meta_param_description
from dask.typing import Key
from dask.utils import M, derived_from, is_index_like
from pandas.core.apply import reconstruct_func, validate_func_kwargs

from dask_expr._collection import FrameBase, Index, Series, new_collection
from dask_expr._expr import (
    Assign,
    Blockwise,
    Expr,
    MapPartitions,
    Projection,
    RenameFrame,
    RenameSeries,
    ToFrame,
    _DeepCopy,
    _extract_meta,
    are_co_aligned,
    determine_column_projection,
    no_default,
)
from dask_expr._reductions import ApplyConcatApply, Chunk, Reduction
from dask_expr._shuffle import RearrangeByColumn
from dask_expr._util import (
    PANDAS_GE_300,
    _convert_to_list,
    get_specified_shuffle,
    is_scalar,
)


def _as_dict(key, value):
    # Utility to convert a single kwarg to a dict.
    # The dict will be empty if the value is None
    return {} if value is None else {key: value}


def _adjust_split_out_for_group_keys(npartitions, by):
    if len(by) == 1:
        return math.ceil(npartitions / 15)
    return math.ceil(npartitions / (10 / (len(by) - 1)))


[docs]class Aggregation: """User defined groupby-aggregation. This class allows users to define their own custom aggregation in terms of operations on Pandas dataframes in a map-reduce style. You need to specify what operation to do on each chunk of data, how to combine those chunks of data together, and then how to finalize the result. See :ref:`dataframe.groupby.aggregate` for more. Parameters ---------- name : str the name of the aggregation. It should be unique, since intermediate result will be identified by this name. chunk : callable a function that will be called with the grouped column of each partition, takes a Pandas SeriesGroupBy in input. It can either return a single series or a tuple of series. The index has to be equal to the groups. agg : callable a function that will be called to aggregate the results of each chunk. Again the argument(s) will be a Pandas SeriesGroupBy. If ``chunk`` returned a tuple, ``agg`` will be called with all of them as individual positional arguments. finalize : callable an optional finalizer that will be called with the results from the aggregation. Examples -------- We could implement ``sum`` as follows: >>> custom_sum = dd.Aggregation( ... name='custom_sum', ... chunk=lambda s: s.sum(), ... agg=lambda s0: s0.sum() ... ) # doctest: +SKIP >>> df.groupby('g').agg(custom_sum) # doctest: +SKIP We can implement ``mean`` as follows: >>> custom_mean = dd.Aggregation( ... name='custom_mean', ... chunk=lambda s: (s.count(), s.sum()), ... agg=lambda count, sum: (count.sum(), sum.sum()), ... finalize=lambda count, sum: sum / count, ... ) # doctest: +SKIP >>> df.groupby('g').agg(custom_mean) # doctest: +SKIP Though of course, both of these are built-in and so you don't need to implement them yourself. """
[docs] def __init__(self, name, chunk, agg, finalize=None): self.chunk = chunk self.agg = agg self.finalize = finalize self.__name__ = name
### ### Groupby-aggregation expressions ### class GroupByBase: @functools.cached_property def _by_meta(self): return [meta_nonempty(x._meta) if isinstance(x, Expr) else x for x in self.by] @functools.cached_property def _by_columns(self): return [x for x in self.by if not isinstance(x, Expr)] @property def split_by(self): return list( flatten( [[x] if not isinstance(x, Expr) else x.columns for x in self.by], container=list, ) ) @functools.cached_property def by(self): return self.operands[len(self._parameters) :] @functools.cached_property def levels(self): return _determine_levels(self.by) @property def shuffle_by_index(self): return True class GroupByChunk(Chunk, GroupByBase): _preserves_partitioning_information = True @functools.cached_property def _args(self) -> list: return [self.frame] + self.by @functools.cached_property def _meta(self): args = [ meta_nonempty(op._meta) if isinstance(op, Expr) else op for op in self._args ] return make_meta(self.operation(*args, **self._kwargs)) class GroupByApplyConcatApply(ApplyConcatApply, GroupByBase): _chunk_cls = GroupByChunk @functools.cached_property def _meta_chunk(self): meta = meta_nonempty(self.frame._meta) return self.chunk(meta, *self._by_meta, **self.chunk_kwargs) @property def _chunk_cls_args(self): return self.by @property def split_out(self): if self.operand("split_out") is None: return 1 return super().split_out @property def _projection_columns(self): return self.frame.columns def _tune_down(self): if self.operand("split_out") is None: return self.substitute_parameters( { "split_out": functools.partial( _adjust_split_out_for_group_keys, by=self.by ) } ) class SingleAggregation(GroupByApplyConcatApply, GroupByBase): """Single groupby aggregation This is an abstract class. Sub-classes must implement the following methods: - `groupby_chunk`: Applied to each group within the `chunk` method of `GroupByApplyConcatApply` - `groupby_aggregate`: Applied to each group within the `aggregate` method of `GroupByApplyConcatApply` Parameters ---------- frame: Expr Dataframe- or series-like expression to group. by: str, list or Series The key for grouping observed: Passed through to dataframe backend. dropna: Whether rows with NA values should be dropped. chunk_kwargs: Key-word arguments to pass to `groupby_chunk`. aggregate_kwargs: Key-word arguments to pass to `aggregate_chunk`. """ _parameters = [ "frame", "observed", "dropna", "chunk_kwargs", "aggregate_kwargs", "_slice", "split_every", "split_out", "sort", "shuffle_method", ] _defaults = { "observed": None, "dropna": None, "chunk_kwargs": None, "aggregate_kwargs": None, "_slice": None, "split_every": 8, "split_out": None, "sort": None, "shuffle_method": None, } groupby_chunk = None groupby_aggregate = None @classmethod def chunk(cls, df, *by, **kwargs): return _apply_chunk(df, *by, **kwargs) @classmethod def aggregate(cls, inputs, **kwargs): return _groupby_aggregate(_concat(inputs), **kwargs) @property def chunk_kwargs(self) -> dict: chunk_kwargs = self.operand("chunk_kwargs") or {} columns = self._slice return { "chunk": self.groupby_chunk, "columns": columns, **_as_dict("observed", self.observed), **_as_dict("dropna", self.dropna), **chunk_kwargs, } @property def aggregate_kwargs(self) -> dict: aggregate_kwargs = self.operand("aggregate_kwargs") or {} groupby_aggregate = self.groupby_aggregate or self.groupby_chunk return { "aggfunc": groupby_aggregate, "levels": self.levels, "sort": self.sort, **_as_dict("observed", self.observed), **_as_dict("dropna", self.dropna), **aggregate_kwargs, } def _simplify_up(self, parent, dependents): return groupby_projection(self, parent, dependents) class GroupbyAggregationBase(GroupByApplyConcatApply, GroupByBase): """Base class for groupby aggregation This class can be subclassed to perform a general groupby aggregation by passing in a `str`, `list` or `dict`-based specification using the `arg` operand. Parameters ---------- frame: Expr Dataframe- or series-like expression to group. by: str, list or Series The key for grouping arg: str, list or dict Aggregation spec defining the specific aggregations to perform. observed: Passed through to dataframe backend. dropna: Whether rows with NA values should be dropped. """ _parameters = [ "frame", "arg", "observed", "dropna", "split_every", "split_out", "sort", "shuffle_method", "_slice", ] _defaults = { "observed": None, "dropna": None, "split_every": 8, "split_out": None, "sort": None, "shuffle_method": None, "_slice": None, } @functools.cached_property def spec(self): # Converts the `arg` operand into specific # chunk, aggregate, and finalizer functions if is_dataframe_like(self.frame._meta): group_columns = self._by_columns if self._slice: non_group_columns = self._slice if is_scalar(non_group_columns): non_group_columns = [non_group_columns] else: non_group_columns = [ col for col in self.frame.columns if col not in group_columns ] spec = _normalize_spec(self.arg, non_group_columns) elif is_series_like(self.frame._meta): if isinstance(self.arg, (list, tuple, dict)): spec = _normalize_spec({None: self.arg}, []) spec = [ (result_column, func, input_column) for ((_, result_column), func, input_column) in spec ] else: spec = _normalize_spec({None: self.arg}, []) spec = [ (self.frame.columns[0], func, input_column) for (_, func, input_column) in spec ] else: raise ValueError(f"aggregate on unknown object {self.frame._meta}") return spec @functools.cached_property def agg_args(self): keys = ["chunk_funcs", "aggregate_funcs", "finalizers"] return dict(zip(keys, _build_agg_args(self.spec))) def _simplify_down(self): if not isinstance(self.arg, dict): return # Use agg-spec information to add column projection required_columns = ( set(self._by_columns) .union(self.arg.keys()) .intersection(self.frame.columns) ) column_projection = [ column for column in self.frame.columns if column in required_columns ] if column_projection != self.frame.columns: return type(self)(self.frame[column_projection], *self.operands[1:]) class GroupbyAggregation(GroupbyAggregationBase): """Logical groupby aggregation class This class lowers itself to concrete implementations for decomposable or holistic aggregations. """ @functools.cached_property def _meta(self): return self._lower()._meta @functools.cached_property def _is_decomposable(self): return not any(s[1] in ("median", np.median) for s in self.spec) def _lower(self): cls = ( DecomposableGroupbyAggregation if self._is_decomposable else HolisticGroupbyAggregation ) return cls( self.frame, self.arg, self.observed, self.dropna, self.split_every, self.split_out, self.sort, self.shuffle_method, self._slice, *self.by, ) class HolisticGroupbyAggregation(GroupbyAggregationBase): """Groupby aggregation for both decomposable and non-decomposable aggregates This class always calculates the aggregates by first collecting all the data for the groups and then aggregating at once. We are always shuffling, so we will never call combine """ @functools.cached_property def _meta(self): meta = self._meta_chunk aggregate = self.aggregate or (lambda x: x) aggregate_kwargs = self.aggregate_kwargs meta = aggregate([meta], **aggregate_kwargs) return make_meta(meta) chunk = staticmethod(_non_agg_chunk) @property def should_shuffle(self): return True @classmethod def aggregate(cls, inputs, **kwargs): return _groupby_aggregate_spec(_concat(inputs), **kwargs) @property def chunk_kwargs(self) -> dict: return { "by": self._by_columns, "key": [col for col in self.frame.columns if col not in self._by_columns], **_as_dict("observed", self.observed), **_as_dict("dropna", self.dropna), } @property def aggregate_kwargs(self) -> dict: return { "spec": self.arg, "levels": _determine_levels(self.by), **_as_dict("observed", self.observed), **_as_dict("dropna", self.dropna), } class DecomposableGroupbyAggregation(GroupbyAggregationBase): """Groupby aggregation for decomposable aggregates The results may be calculated via tree or shuffle reduction. """ chunk = staticmethod(_groupby_apply_funcs) @classmethod def combine(cls, inputs, **kwargs): return _groupby_apply_funcs(_concat(inputs), **kwargs) @classmethod def aggregate(cls, inputs, **kwargs): return _agg_finalize(_concat(inputs), **kwargs) @property def chunk_kwargs(self) -> dict: return { "funcs": self.agg_args["chunk_funcs"], "sort": self.sort, **_as_dict("observed", self.observed), **_as_dict("dropna", self.dropna), } @property def combine_kwargs(self) -> dict: return { "funcs": self.agg_args["aggregate_funcs"], "level": self.levels, "sort": self.sort, **_as_dict("observed", self.observed), **_as_dict("dropna", self.dropna), } @property def aggregate_kwargs(self) -> dict: return { "aggregate_funcs": self.agg_args["aggregate_funcs"], "arg": self.arg, "columns": self._slice, "finalize_funcs": self.agg_args["finalizers"], "is_series": self.frame._meta.ndim == 1, "level": self.levels, "sort": self.sort, **_as_dict("observed", self.observed), **_as_dict("dropna", self.dropna), } class Sum(SingleAggregation): groupby_chunk = M.sum class Prod(SingleAggregation): groupby_chunk = M.prod class Min(SingleAggregation): groupby_chunk = M.min class Max(SingleAggregation): groupby_chunk = M.max class First(SingleAggregation): groupby_chunk = M.first class Last(SingleAggregation): groupby_chunk = M.last class Count(SingleAggregation): groupby_chunk = M.count groupby_aggregate = M.sum class Size(SingleAggregation): groupby_chunk = M.size groupby_aggregate = M.sum def _simplify_down(self): if ( self._slice is not None and not isinstance(self._slice, list) or self.frame.ndim == 1 ): # Scalar slices influence the result and are allowed, i.e., the name of # the series is different return # We can remove every column since pandas reduces to a Series anyway by_columns = self._by_columns by_columns = [c for c in by_columns if c in self.frame.columns] if set(by_columns) == set(self.frame.columns): return slice_idx = self._parameters.index("_slice") ops = [op if i != slice_idx else None for i, op in enumerate(self.operands)] return type(self)(self.frame[by_columns], *ops[1:]) class IdxMin(SingleAggregation): groupby_chunk = M.idxmin groupby_aggregate = M.first class IdxMax(IdxMin): groupby_chunk = M.idxmax groupby_aggregate = M.first class ValueCounts(SingleAggregation): groupby_chunk = staticmethod(_value_counts) groupby_aggregate = staticmethod(_value_counts_aggregate) class Unique(SingleAggregation): groupby_chunk = M.unique groupby_aggregate = staticmethod(_unique_aggregate) @functools.cached_property def aggregate_kwargs(self) -> dict: kwargs = super().aggregate_kwargs meta = self.frame._meta if meta.ndim == 1: name = meta.name else: name = meta[self._slice].name return {**kwargs, "name": name} class Cov(SingleAggregation): chunk = staticmethod(_cov_chunk) std = False @classmethod def combine(cls, g, levels): return _concat(g) @classmethod def aggregate(cls, inputs, **kwargs): return _cov_agg(_concat(inputs), **kwargs) @property def chunk_kwargs(self) -> dict: return self.operand("chunk_kwargs") @property def aggregate_kwargs(self) -> dict: kwargs = self.operand("aggregate_kwargs").copy() kwargs["sort"] = self.sort kwargs["std"] = self.std kwargs["levels"] = self.levels return kwargs @property def combine_kwargs(self) -> dict: return {"levels": self.levels} class Corr(Cov): std = True class GroupByReduction(Reduction, GroupByBase): _chunk_cls = GroupByChunk def _tune_down(self): if self.operand("split_out") is None: return self.substitute_parameters( { "split_out": functools.partial( _adjust_split_out_for_group_keys, by=self.by ) } ) @property def split_out(self): if self.operand("split_out") is None: return 1 return super().split_out @property def _chunk_cls_args(self): return self.by @functools.cached_property def _meta_chunk(self): meta = meta_nonempty(self.frame._meta) return self.chunk(meta, *self._by_meta, **self.chunk_kwargs) def _divisions(self): if self.sort: return (None, None) split_out = self.split_out if split_out is True: split_out = self.frame.npartitions return (None,) * (split_out + 1) def _simplify_up(self, parent, dependents): return groupby_projection(self, parent, dependents) @functools.cached_property def combine_kwargs(self): return {"levels": self.levels, "observed": self.observed, "dropna": self.dropna} @functools.cached_property def chunk_kwargs(self): return {"observed": self.observed, "dropna": self.dropna} @functools.cached_property def aggregate_kwargs(self): return { "levels": self.levels, "sort": self.sort, "observed": self.observed, "dropna": self.dropna, } def _var_combine(g, levels, sort=False, observed=False, dropna=True): return g.groupby(level=levels, sort=sort, observed=observed, dropna=dropna).sum() class Var(GroupByReduction): _parameters = [ "frame", "ddof", "numeric_only", "split_out", "split_every", "sort", "dropna", "observed", "shuffle_method", ] _defaults = { "split_out": 1, "sort": None, "observed": None, "dropna": None, "split_every": None, "shuffle_method": None, } reduction_aggregate = staticmethod(_var_agg) reduction_combine = staticmethod(_var_combine) chunk = staticmethod(_var_chunk) @functools.cached_property def aggregate_kwargs(self): return { "ddof": self.ddof, "numeric_only": self.numeric_only, **super().aggregate_kwargs, } @functools.cached_property def chunk_kwargs(self): return {"numeric_only": self.numeric_only, **super().chunk_kwargs} class Std(Var): def _lower(self): v = Var(*self.operands) return MapPartitions( v, func=np.sqrt, meta=v._meta, enforce_metadata=True, transform_divisions=True, clear_divisions=True, ) def _mean_chunk(df, *by, observed=None, dropna=None): if is_series_like(df): df = df.to_frame() g = _groupby_raise_unaligned(df, by=by, observed=observed, dropna=dropna) x = g.sum(numeric_only=True) n = g[x.columns].count().rename(columns=lambda c: c + "-count") return concat([x, n], axis=1) def _mean_combine(g, levels, sort=False, observed=None, dropna=None): return g.groupby(level=levels, sort=sort, observed=observed, dropna=dropna).sum() def _mean_agg(g, levels, sort=False, observed=False, dropna=True): result = g.groupby(level=levels, sort=sort, observed=observed, dropna=dropna).sum() s = result[result.columns[: len(result.columns) // 2]] c = result[result.columns[len(result.columns) // 2 :]] c.columns = s.columns return s / c class Mean(GroupByReduction): _parameters = SingleAggregation._parameters _defaults = SingleAggregation._defaults reduction_aggregate = staticmethod(_mean_agg) reduction_combine = staticmethod(_mean_combine) chunk = staticmethod(_mean_chunk) def nunique_df_combine(dfs, *args, **kwargs): return _nunique_df_combine(concat(dfs), *args, **kwargs) def nunique_df_aggregate(dfs, levels, name, sort=False): df = concat(dfs) if df.ndim == 1: # split out reduces to a Series return df.groupby(level=levels, sort=sort, observed=True).nunique() else: return df.groupby(level=levels, sort=sort, observed=True)[name].nunique() class NUnique(SingleAggregation): aggregate = staticmethod(nunique_df_aggregate) combine = staticmethod(nunique_df_combine) @staticmethod def chunk(df, *by, **kwargs): if df.ndim == 1: df = df.to_frame() kwargs = dict(name=df.columns[0], levels=_determine_levels(by)) return _nunique_df_chunk(df, *by, **kwargs) @functools.cached_property def chunk_kwargs(self) -> dict: kwargs = super().chunk_kwargs kwargs["name"] = self._slice return kwargs @functools.cached_property def aggregate_kwargs(self) -> dict: return {"levels": self.levels, "name": self._slice} @functools.cached_property def combine_kwargs(self): return {"levels": self.levels} class Head(SingleAggregation): groupby_chunk = staticmethod(_head_chunk) groupby_aggregate = staticmethod(_head_aggregate) @classmethod def combine(cls, inputs, **kwargs): return _concat(inputs) class Tail(Head): groupby_chunk = staticmethod(_tail_chunk) groupby_aggregate = staticmethod(_tail_aggregate) class GroupByApply(Expr, GroupByBase): _parameters = [ "frame", "observed", "dropna", "_slice", "group_keys", "func", "meta", "args", "kwargs", "shuffle_method", ] _defaults = { "observed": None, "dropna": None, "_slice": None, "group_keys": True, "shuffle_method": None, } @functools.cached_property def grp_func(self): return functools.partial(groupby_slice_apply, func=self.func) @functools.cached_property def _meta(self): if self.operand("meta") is not no_default: return make_meta(self.operand("meta"), parent_meta=self.frame._meta) return _meta_apply_transform(self, self.grp_func) def _divisions(self): if self.need_to_shuffle: return (None,) * (self.frame.npartitions + 1) return self.frame.divisions def _shuffle_grp_func(self, shuffled=False): return self.grp_func @functools.cached_property def unique_partition_mapping_columns_from_shuffle(self): if not self.need_to_shuffle: return self.frame.unique_partition_mapping_columns_from_shuffle elif not any(isinstance(b, Expr) for b in self.by): return {tuple(self._by_columns)} else: return set() @functools.cached_property def need_to_shuffle(self): if not any(isinstance(b, Expr) for b in self.by): if any( set(self._by_columns) >= set(cols) for cols in self.frame.unique_partition_mapping_columns_from_shuffle ): return False return any(div is None for div in self.frame.divisions) or not any( _contains_index_name(self.frame._meta.index.name, b) for b in self.by ) def _lower(self): df = self.frame by = self.by if self.need_to_shuffle: def get_map_columns(df): map_columns = {col: str(col) for col in df.columns if col != str(col)} unmap_columns = {v: k for k, v in map_columns.items()} return map_columns, unmap_columns # Map Tuple[str] column names to str before the shuffle if any(isinstance(b, Expr) for b in self.by): is_series = df.ndim == 1 if is_series: df = ToFrame(df) cols, assign_exprs = [], [] for i, b in enumerate(self.by): if isinstance(b, Expr): assign_exprs.extend([f"_by_{i}", b]) cols.append(f"_by_{i}") if len(assign_exprs): df = Assign(df, *assign_exprs) map_columns, unmap_columns = get_map_columns(df) if map_columns: df = RenameFrame(df, map_columns) df = RearrangeByColumn( df, [map_columns.get(c, c) for c in cols], df.npartitions, method=self.shuffle_method, ) if unmap_columns: df = RenameFrame(df, unmap_columns) # pandas checks if the group keys are part of the initial # DataFrame through reference tracking. This is fine as long # as we don't trigger a copy after the Assign above, since the # blocks stay separate normally, disk shuffle triggers a copy # though, and we shouldn't rely on those internals in pandas, # so we can trigger a deep copy here to clear the references # since we know more about the query than pandas does. by = [ ( b if not isinstance(b, Expr) else _DeepCopy( RenameSeries( Projection(df, f"_by_{i}"), index=self.by[i].columns[0] ) ) ) for i, b in enumerate(self.by) ] cols = [col for col in df.columns if col not in cols] if is_series: cols = cols[0] df = Projection(df, cols) else: map_columns, unmap_columns = get_map_columns(df) if map_columns: df = RenameFrame(df, map_columns) df = RearrangeByColumn( df, map_columns.get(self.by[0], self.by[0]), self.npartitions, method=self.shuffle_method, ) if unmap_columns: df = RenameFrame(df, unmap_columns) grp_func = self._shuffle_grp_func(True) else: grp_func = self._shuffle_grp_func(False) return GroupByUDFBlockwise( df, self._slice, self.group_keys, self.observed, self.dropna, self.operand("args"), self.operand("kwargs"), grp_func, self.operand("meta"), *by, ) class GroupByTransform(GroupByApply): @functools.cached_property def grp_func(self): return functools.partial(groupby_slice_transform, func=self.func) def _fillna(group, *, what, **kwargs): return getattr(group, what)(**kwargs) class GroupByBFill(GroupByTransform): func = staticmethod(functools.partial(_fillna, what="bfill")) def _simplify_up(self, parent, dependents): if isinstance(parent, Projection): return groupby_projection(self, parent, dependents) class GroupByFFill(GroupByBFill): func = staticmethod(functools.partial(_fillna, what="ffill")) class GroupByShift(GroupByApply): _defaults = { "observed": None, "dropna": None, "_slice": None, "func": None, "group_keys": True, } @functools.cached_property def grp_func(self): return functools.partial(groupby_slice_shift, shuffled=False) def _shuffle_grp_func(self, shuffled=False): return functools.partial(groupby_slice_shift, shuffled=shuffled) class Median(GroupByShift): _parameters = GroupByApply._parameters + ["split_every"] default = {**GroupByShift._defaults, "split_every": None} @functools.cached_property def grp_func(self): return functools.partial(_median_groupby_aggregate) def _shuffle_grp_func(self, shuffled=False): return self.grp_func def _simplify_up(self, parent, dependents): if isinstance(parent, Projection): return groupby_projection(self, parent, dependents) @functools.cached_property def npartitions(self): npartitions = self.frame.npartitions if self.split_every is not None: npartitions = npartitions // self.split_every return npartitions def groupby_get_group(df, *by_key, get_key=None, columns=None): if PANDAS_GE_300 and is_scalar(get_key): get_key = (get_key,) return _groupby_get_group(df, list(by_key), get_key, columns) class GetGroup(Blockwise, GroupByBase): operation = staticmethod(groupby_get_group) _parameters = ["frame", "get_key", "columns"] _keyword_only = ["get_key", "columns"] @property def _args(self) -> list: return [self.frame] + self.by @property def _kwargs(self) -> dict: cols = self.operand("columns") return { "get_key": self.get_key, "columns": cols if cols is not None else self.frame.columns, } def _median_groupby_aggregate( df, by=None, key=None, group_keys=True, # not used dropna=None, observed=None, numeric_only=False, args=None, **kwargs, ): dropna = {"dropna": dropna} if dropna is not None else {} observed = {"observed": observed} if observed is not None else {} g = df.groupby(by=by, **observed, **dropna) if key is not None: g = g[key] return g.median(numeric_only=numeric_only) class GroupByUDFBlockwise(Blockwise, GroupByBase): _parameters = [ "frame", "_slice", "group_keys", "observed", "dropna", "args", "kwargs", "dask_func", "meta", ] _defaults = {"observed": None, "dropna": None} _keyword_only = [ "_slice", "group_keys", "observed", "dropna", "args", "kwargs", "dask_func", ] @property def _args(self) -> list: return [self.frame] + self.by @functools.cached_property def _meta(self): if self.operand("meta") is not no_default: return make_meta(self.operand("meta"), parent_meta=self.frame._meta) return _meta_apply_transform(self, self.dask_func) def _task(self, name: Key, index: int) -> Task: args = [self._blockwise_arg(op, index) for op in self._args] kwargs = self._kwargs.copy() kwargs.update( { "_func": self.operation, "_meta": self._meta, } ) return Task(name, apply_and_enforce, *args, **kwargs) @staticmethod def operation( frame, *by, _slice, group_keys=None, observed=None, dropna=None, args=None, kwargs=None, dask_func=None, ): if args is None: args = () if kwargs is None: kwargs = {} return dask_func( frame, list(by), key=_slice, group_keys=group_keys, args=args, **_as_dict("observed", observed), **_as_dict("dropna", dropna), **kwargs, ) def _contains_index_name(index_name, by): if index_name is None: return False if isinstance(by, Expr): return False if not is_scalar(by): return False return index_name == by def groupby_slice_apply( df, grouper, key, func, args, group_keys=GROUP_KEYS_DEFAULT, dropna=None, observed=None, **kwargs, ): return _groupby_slice_apply( df, grouper, key, func, *args, group_keys=group_keys, dropna=dropna, observed=observed, **kwargs, ) def groupby_slice_shift( df, grouper, key, args, shuffled, group_keys=GROUP_KEYS_DEFAULT, dropna=None, observed=None, **kwargs, ): return _groupby_slice_shift( df, grouper, key, shuffled, group_keys, dropna, observed, **kwargs ) def groupby_slice_transform( df, grouper, key, func, args, group_keys=GROUP_KEYS_DEFAULT, dropna=None, observed=None, **kwargs, ): return _groupby_slice_transform( df, grouper, key, func, *args, group_keys=group_keys, dropna=dropna, observed=observed, **kwargs, ) def _meta_apply_transform(obj, grp_func): kwargs = obj.operand("kwargs") by_meta = obj._by_meta by_meta = [x if is_scalar(x) else meta_nonempty(x) for x in by_meta] meta_args, meta_kwargs = _extract_meta((obj.operand("args"), kwargs), nonempty=True) return make_meta( grp_func( meta_nonempty(obj.frame._meta), by_meta, key=obj._slice, args=meta_args, **_as_dict("observed", obj.observed), **_as_dict("dropna", obj.dropna), **_as_dict("group_keys", obj.group_keys), **meta_kwargs, ) ) def groupby_projection(expr, parent, dependents): if isinstance(parent, Projection): columns = determine_column_projection( expr, parent, dependents, additional_columns=expr._by_columns ) columns = _convert_to_list(columns) columns = [col for col in expr.frame.columns if col in columns] if columns == expr.frame.columns: return return type(parent)( type(expr)(expr.frame[columns], *expr.operands[1:]), *parent.operands[1:], ) return ### ### Groupby Collection API ### def _clean_by_expr(obj, by): if ( isinstance(by, Series) and by.name in obj.columns and obj.ndim == 2 and by._name == obj[by.name]._name ): return by.name elif isinstance(by, Index) and by._name == obj.index._name: return by.expr elif isinstance(by, (Series, Index)): if not are_co_aligned(obj.expr, by.expr): raise NotImplementedError( "by must be in the DataFrames columns or aligned with the DataFrame." ) if isinstance(by, Index): by = by.to_series() by.index = obj.index return by.expr # By is a column name, e.g. str or int return by class GroupByCumulative(Expr, GroupByBase): _parameters = ["frame", "dropna", "_slice", "numeric_only"] _defaults = {"numeric_only": None, "dropna": None, "_slice": None} chunk = None aggregate = None initial = 0 @functools.cached_property def _meta(self): cols = None if self._slice is None else self._slice return _apply_chunk( self.frame._meta, *self._by_meta, chunk=self.chunk, columns=cols, **self.numeric_only, ) def _divisions(self): return self.frame.divisions @property def numeric_only(self): no = self.operand("numeric_only") return {} if no is None else {"numeric_only": no} def _lower(self): meta = self._meta dropna = {} if self.dropna is None else {"dropna": self.dropna} columns = meta.name if is_series_like(meta) else meta.columns frame = MapPartitions( self.frame, _apply_chunk, meta, True, True, False, True, None, None, {"chunk": self.chunk, "columns": columns, **dropna, **self.numeric_only}, *self.by, ) cum_raw = frame if frame.ndim == 1: frame = ToFrame(frame) by = self.by.copy() for i, b in enumerate(by): if not isinstance(b, Expr): if b in self.frame.columns: frame = Assign(frame, f"_by_{b}", self.frame[b]) else: frame = Assign(frame, f"_by_{b}", self.frame.index) by[i] = f"_by_{b}" columns = 0 if columns is None else columns cum_last = MapPartitions( frame, _apply_chunk, no_default, True, True, False, True, None, None, {"chunk": M.last, "columns": columns, **dropna}, *by, ) return GroupByCumulativeFinalizer( frame, cum_raw, cum_last, meta, self.aggregate, self.initial, columns, *by, ) class GroupByCumulativeFinalizer(Expr, GroupByBase): _parameters = [ "frame", "cum_raw", "cum_last", "meta", "aggregate", "initial", "columns", ] @functools.cached_property def _meta(self): return self.meta def _divisions(self): return self.frame.divisions def _layer(self) -> dict: dsk = {(self._name, 0): (self.cum_raw._name, 0)} name_cum = "cum-last" + self._name for i in range(1, self.frame.npartitions): # store each cumulative step to graph to reduce computation if i == 1: dsk[(name_cum, i)] = (self.cum_last._name, i - 1) else: # aggregate with previous cumulation results dsk[(name_cum, i)] = ( _cum_agg_filled, (name_cum, i - 1), (self.cum_last._name, i - 1), self.aggregate, self.initial, ) dsk[(self._name, i)] = ( _cum_agg_aligned, (self.frame._name, i), (name_cum, i), self.by, self.operand("columns"), self.aggregate, self.initial, ) return dsk class GroupByCumsum(GroupByCumulative): chunk = M.cumsum aggregate = M.add initial = 0 class GroupByCumprod(GroupByCumulative): chunk = M.cumprod aggregate = M.mul initial = 1 class GroupByCumcount(GroupByCumulative): chunk = M.cumcount aggregate = staticmethod(_cumcount_aggregate) initial = -1 class GroupBy: """Collection container for groupby aggregations The purpose of this class is to expose an API similar to Pandas' `Groupby` for dask-expr collections. See Also -------- SingleAggregation """ def __init__( self, obj, by, group_keys=True, sort=None, observed=None, dropna=None, slice=None, ): if isinstance(by, (tuple, list)): by = [_clean_by_expr(obj, x) for x in by] else: by = _clean_by_expr(obj, by) by_ = by if isinstance(by, (tuple, list)) else [by] if any(isinstance(key, pd.Grouper) for key in by_): raise NotImplementedError("pd.Grouper is currently not supported by Dask.") self._slice = slice # Check if we can project columns projection = None if ( np.isscalar(slice) or isinstance(slice, (str, list, tuple)) or ( (is_index_like(slice) or is_series_like(slice)) and not is_dask_collection(slice) ) ): projection = set(by_).union( {slice} if (np.isscalar(slice) or isinstance(slice, str)) else slice ) projection = [c for c in obj.columns if c in projection] self.obj = obj[projection] if projection is not None else obj self.sort = sort self.observed = ( observed if observed is not None else False if not PANDAS_GE_300 else True ) self.dropna = dropna self.group_keys = group_keys self.by = ( [by] if np.isscalar(by) or isinstance(by, Expr) or isinstance(by, Callable) else list(by) ) # surface pandas errors self._meta = self.obj._meta.groupby( by, group_keys=group_keys, sort=sort, **_as_dict("observed", observed), **_as_dict("dropna", dropna), ) if slice is not None: if isinstance(slice, tuple): slice = list(slice) self._meta = self._meta[slice] def _numeric_only_kwargs(self, numeric_only): kwargs = {"numeric_only": numeric_only} return {"chunk_kwargs": kwargs.copy(), "aggregate_kwargs": kwargs.copy()} def _single_agg( self, expr_cls, split_every=None, split_out=None, chunk_kwargs=None, aggregate_kwargs=None, shuffle_method=None, ): if split_every is None: split_every = 8 return new_collection( expr_cls( self.obj.expr, self.observed, self.dropna, chunk_kwargs, aggregate_kwargs, self._slice, split_every, split_out, self.sort, get_specified_shuffle(shuffle_method), *self.by, ) ) def __getattr__(self, key): try: return self[key] except KeyError as e: raise AttributeError(e) from e def __dir__(self): return sorted( set( dir(type(self)) + list(self.__dict__) + list(filter(M.isidentifier, self.obj.columns)) ) ) def compute(self, **kwargs): raise NotImplementedError( "DataFrameGroupBy does not allow compute method." "Please chain it with an aggregation method (like ``.mean()``) or get a " "specific group using ``.get_group()`` before calling ``compute()``" ) def __getitem__(self, key): if is_scalar(key): return SeriesGroupBy( self.obj, by=self.by, slice=key, sort=self.sort, dropna=self.dropna, observed=self.observed, ) g = GroupBy( self.obj, by=self.by, slice=key, sort=self.sort, dropna=self.dropna, observed=self.observed, group_keys=self.group_keys, ) return g
[docs] @derived_from( pd.core.groupby.GroupBy, inconsistencies="If the group is not present, Dask will return an empty Series/DataFrame.", ) def get_group(self, key): return new_collection(GetGroup(self.obj.expr, key, self._slice, *self.by))
[docs] @derived_from(pd.core.groupby.GroupBy) def count(self, **kwargs): return self._single_agg(Count, **kwargs)
[docs] @derived_from(pd.core.groupby.GroupBy) def sum(self, numeric_only=False, min_count=None, **kwargs): numeric_kwargs = self._numeric_only_kwargs(numeric_only) result = self._single_agg(Sum, **kwargs, **numeric_kwargs) if min_count: return result.where(self.count() >= min_count, other=np.nan) return result
@derived_from(pd.core.groupby.GroupBy) def prod(self, numeric_only=False, min_count=None, **kwargs): numeric_kwargs = self._numeric_only_kwargs(numeric_only) result = self._single_agg(Prod, **kwargs, **numeric_kwargs) if min_count: return result.where(self.count() >= min_count, other=np.nan) return result def _cum_agg(self, cls, numeric_only=None): return new_collection( cls( self.obj.expr, self.dropna, self._slice, numeric_only, *self.by, ) )
[docs] @derived_from(pd.core.groupby.GroupBy) def cumsum(self, numeric_only=False): return self._cum_agg(GroupByCumsum, numeric_only)
[docs] @derived_from(pd.core.groupby.GroupBy) def cumprod(self, numeric_only=False): return self._cum_agg(GroupByCumprod, numeric_only)
[docs] @derived_from(pd.core.groupby.GroupBy) def cumcount(self): return self._cum_agg(GroupByCumcount)
def _all_numeric(self): """Are all columns that we're not grouping on numeric?""" numerics = self.obj._meta._get_numeric_data() # This computes a groupby but only on the empty meta post_group_columns = self._meta.count().columns return len(set(post_group_columns) - set(numerics.columns)) == 0
[docs] @derived_from(pd.core.groupby.GroupBy) def mean(self, numeric_only=False, split_out=None, **kwargs): if not numeric_only and not self._all_numeric(): raise NotImplementedError( "'numeric_only=False' is not implemented in Dask." ) numeric_kwargs = self._numeric_only_kwargs(numeric_only) result = self._single_agg(Mean, split_out=split_out, **kwargs, **numeric_kwargs) return self._postprocess_series_squeeze(result)
def _postprocess_series_squeeze(self, result): if ( isinstance(self.obj, Series) or is_scalar(self._slice) and self._slice is not None ): if len(result.columns) < 1: raise NotImplementedError( "Cannot call `SeriesGroupBy.var` or `SeriesGroupBy.mean` on the key " "column. Please use `aggregate` if you really need to do this." ) result = result[result.columns[0]] return result
[docs] @derived_from(pd.core.groupby.GroupBy) def min(self, numeric_only=False, **kwargs): numeric_kwargs = self._numeric_only_kwargs(numeric_only) return self._single_agg(Min, **kwargs, **numeric_kwargs)
[docs] @derived_from(pd.core.groupby.GroupBy) def max(self, numeric_only=False, **kwargs): numeric_kwargs = self._numeric_only_kwargs(numeric_only) return self._single_agg(Max, **kwargs, **numeric_kwargs)
[docs] @derived_from(pd.core.groupby.GroupBy) def first(self, numeric_only=False, sort=None, **kwargs): if sort: raise NotImplementedError() numeric_kwargs = self._numeric_only_kwargs(numeric_only) return self._single_agg(First, **kwargs, **numeric_kwargs)
[docs] @derived_from(pd.DataFrame) def cov( self, ddof=1, split_every=None, split_out=None, numeric_only=False, shuffle_method=None, ): numeric_kwargs = self._numeric_only_kwargs(numeric_only) return self._single_agg( Cov, split_every, split_out, chunk_kwargs=numeric_kwargs["chunk_kwargs"], aggregate_kwargs={"ddof": ddof}, )
[docs] @derived_from(pd.DataFrame) def corr( self, split_every=None, split_out=None, numeric_only=False, shuffle_method=None ): numeric_kwargs = self._numeric_only_kwargs(numeric_only) return self._single_agg( Corr, split_every, split_out, chunk_kwargs=numeric_kwargs["chunk_kwargs"], aggregate_kwargs={"ddof": 1}, )
[docs] @derived_from(pd.core.groupby.GroupBy) def last(self, numeric_only=False, sort=None, **kwargs): if sort: raise NotImplementedError() numeric_kwargs = self._numeric_only_kwargs(numeric_only) return self._single_agg(Last, **kwargs, **numeric_kwargs)
[docs] @derived_from(pd.core.groupby.GroupBy) def ffill(self, limit=None, shuffle_method=None): return self._transform_like_op( GroupByFFill, None, limit=limit, shuffle_method=shuffle_method )
[docs] @derived_from(pd.core.groupby.GroupBy) def bfill(self, limit=None, shuffle_method=None): return self._transform_like_op( GroupByBFill, None, limit=limit, shuffle_method=shuffle_method )
[docs] @derived_from(pd.core.groupby.GroupBy) def size(self, **kwargs): return self._single_agg(Size, **kwargs)
[docs] @derived_from(pd.DataFrame) def idxmin( self, split_every=None, split_out=None, skipna=True, numeric_only=False, shuffle_method=None, ): numeric_kwargs = self._numeric_only_kwargs(numeric_only) numeric_kwargs["chunk_kwargs"]["skipna"] = skipna return self._single_agg( IdxMin, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, **numeric_kwargs, )
[docs] @derived_from(pd.DataFrame) def idxmax( self, split_every=None, split_out=None, skipna=True, numeric_only=False, shuffle_method=None, ): numeric_kwargs = self._numeric_only_kwargs(numeric_only) numeric_kwargs["chunk_kwargs"]["skipna"] = skipna return self._single_agg( IdxMax, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, **numeric_kwargs, )
@derived_from(pd.core.groupby.SeriesGroupBy) def head(self, n=5, split_every=None, split_out=None): chunk_kwargs = {"n": n} aggregate_kwargs = { "n": n, "index_levels": len(self.by) if not isinstance(self.by, Expr) else 1, } return self._single_agg( Head, split_every=split_every, split_out=split_out, chunk_kwargs=chunk_kwargs, aggregate_kwargs=aggregate_kwargs, ) @derived_from(pd.core.groupby.SeriesGroupBy) def tail(self, n=5, split_every=None, split_out=None): chunk_kwargs = {"n": n} aggregate_kwargs = { "n": n, "index_levels": len(self.by) if not isinstance(self.by, Expr) else 1, } return self._single_agg( Tail, split_every=split_every, split_out=split_out, chunk_kwargs=chunk_kwargs, aggregate_kwargs=aggregate_kwargs, )
[docs] @derived_from(pd.core.groupby.GroupBy) def var( self, ddof=1, split_every=None, split_out=None, numeric_only=False, shuffle_method=None, ): if not numeric_only and not self._all_numeric(): raise NotImplementedError( "'numeric_only=False' is not implemented in Dask." ) result = new_collection( Var( self.obj.expr, ddof, numeric_only, split_out, split_every, self.sort, self.dropna, self.observed, shuffle_method, *self.by, ) ) return self._postprocess_series_squeeze(result)
[docs] @derived_from(pd.core.groupby.GroupBy) def std( self, ddof=1, split_every=None, split_out=None, numeric_only=False, shuffle_method=None, ): if not numeric_only and not self._all_numeric(): raise NotImplementedError( "'numeric_only=False' is not implemented in Dask." ) result = new_collection( Std( self.obj.expr, ddof, numeric_only, split_out, split_every, self.sort, self.dropna, self.observed, shuffle_method, *self.by, ) ) return self._postprocess_series_squeeze(result)
[docs] @_aggregate_docstring(based_on="pd.core.groupby.DataFrameGroupBy.agg") def aggregate( self, arg=None, split_every=8, split_out=None, shuffle_method=None, **kwargs ): relabeling, order, columns = None, None, None if arg is None: if not isinstance(self, SeriesGroupBy): relabeling, arg, columns, order = reconstruct_func(arg, **kwargs) elif isinstance(self, SeriesGroupBy): columns, arg = validate_func_kwargs(kwargs) relabeling = True if arg == "size": return self.size() result = new_collection( GroupbyAggregation( self.obj.expr, arg, self.observed, self.dropna, split_every, split_out, self.sort, shuffle_method, self._slice, *self.by, ) ) if relabeling and result is not None: if order is not None: result = result.iloc[:, order] result.columns = columns return result
def agg(self, *args, **kwargs): return self.aggregate(*args, **kwargs) def _warn_if_no_meta(self, meta): if meta is no_default: msg = ( "`meta` is not specified, inferred from partial data. " "Please provide `meta` if the result is unexpected.\n" " Before: .apply(func)\n" " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n" " or: .apply(func, meta=('x', 'f8')) for series result" ) warnings.warn(msg, stacklevel=3)
[docs] @insert_meta_param_description(pad=12) def apply(self, func, *args, meta=no_default, shuffle_method=None, **kwargs): """Parallel version of pandas GroupBy.apply This mimics the pandas version except for the following: 1. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. 2. Dask's GroupBy.apply is not appropriate for aggregations. For custom aggregations, use :class:`dask.dataframe.groupby.Aggregation`. .. warning:: Pandas' groupby-apply can be used to to apply arbitrary functions, including aggregations that result in one row per group. Dask's groupby-apply will apply ``func`` once on each group, doing a shuffle if needed, such that each group is contained in one partition. When ``func`` is a reduction, e.g., you'll end up with one row per group. To apply a custom aggregation with Dask, use :class:`dask.dataframe.groupby.Aggregation`. Parameters ---------- func: function Function to apply args, kwargs : Scalar, Delayed or object Arguments and keywords to pass to the function. $META Returns ------- applied : Series or DataFrame depending on columns keyword """ self._warn_if_no_meta(meta) return new_collection( GroupByApply( self.obj.expr, self.observed, self.dropna, self._slice, self.group_keys, func, meta, args, kwargs, get_specified_shuffle(shuffle_method), *self.by, ) )
def _transform_like_op( self, expr_cls, func, meta=no_default, shuffle_method=None, *args, **kwargs ): return new_collection( expr_cls( self.obj.expr, self.observed, self.dropna, self._slice, self.group_keys, func, meta, args, kwargs, get_specified_shuffle(shuffle_method), *self.by, ) )
[docs] @insert_meta_param_description(pad=12) def transform(self, func, meta=no_default, shuffle_method=None, *args, **kwargs): """Parallel version of pandas GroupBy.transform This mimics the pandas version except for the following: 1. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. 2. Dask's GroupBy.transform is not appropriate for aggregations. For custom aggregations, use :class:`dask.dataframe.groupby.Aggregation`. .. warning:: Pandas' groupby-transform can be used to apply arbitrary functions, including aggregations that result in one row per group. Dask's groupby-transform will apply ``func`` once on each group, doing a shuffle if needed, such that each group is contained in one partition. When ``func`` is a reduction, e.g., you'll end up with one row per group. To apply a custom aggregation with Dask, use :class:`dask.dataframe.groupby.Aggregation`. Parameters ---------- func: function Function to apply args, kwargs : Scalar, Delayed or object Arguments and keywords to pass to the function. $META Returns ------- applied : Series or DataFrame depending on columns keyword """ self._warn_if_no_meta(meta) return self._transform_like_op( GroupByTransform, func, meta, shuffle_method, *args, **kwargs )
@insert_meta_param_description(pad=12) def shift(self, periods=1, meta=no_default, shuffle_method=None, *args, **kwargs): """Parallel version of pandas GroupBy.shift This mimics the pandas version except for the following: If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. Parameters ---------- periods : Delayed, Scalar or int, default 1 Number of periods to shift. freq : Delayed, Scalar or str, optional Frequency string. fill_value : Scalar, Delayed or object, optional The scalar value to use for newly introduced missing values. $META Returns ------- shifted : Series or DataFrame shifted within each group. Examples -------- >>> import dask >>> ddf = dask.datasets.timeseries(freq="1h") >>> result = ddf.groupby("name").shift(1, meta={"id": int, "x": float, "y": float}) """ if "axis" in kwargs: raise TypeError("axis is not supported in shift.") self._warn_if_no_meta(meta) kwargs = {"periods": periods, **kwargs} return self._transform_like_op( GroupByShift, None, meta, shuffle_method, *args, **kwargs ) @derived_from(pd.core.groupby.GroupBy) def median( self, split_every=None, split_out=True, shuffle_method=None, numeric_only=False ): result = new_collection( Median( self.obj.expr, self.observed, self.dropna, self._slice, self.group_keys, None, no_default, (), {"numeric_only": numeric_only}, get_specified_shuffle(shuffle_method), split_every, *self.by, ) ) if split_out is not True: result = result.repartition(npartitions=split_out) return result
[docs] def rolling(self, window, min_periods=None, center=False, win_type=None, axis=0): """Provides rolling transformations. .. note:: Since MultiIndexes are not well supported in Dask, this method returns a dataframe with the same index as the original data. The groupby column is not added as the first level of the index like pandas does. This method works differently from other groupby methods. It does a groupby on each partition (plus some overlap). This means that the output has the same shape and number of partitions as the original. Parameters ---------- window : str, offset Size of the moving window. This is the number of observations used for calculating the statistic. Data must have a ``DatetimeIndex`` min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). center : boolean, default False Set the labels at the center of the window. win_type : string, default None Provide a window type. The recognized window types are identical to pandas. axis : int, default 0 Returns ------- a Rolling object on which to call a method to compute a statistic Examples -------- >>> import dask >>> ddf = dask.datasets.timeseries(freq="1h") >>> result = ddf.groupby("name").x.rolling('1D').max() """ from dask_expr._rolling import Rolling return Rolling( self.obj, window, min_periods=min_periods, center=center, win_type=win_type, groupby_kwargs={ "by": self.by, "sort": self.sort, "observed": self.observed, "dropna": self.dropna, "group_keys": self.group_keys, }, groupby_slice=self._slice, )
class SeriesGroupBy(GroupBy): def __init__( self, obj, by, sort=None, observed=None, dropna=None, slice=None, ): # Raise pandas errors if applicable if isinstance(obj, Series): if isinstance(by, FrameBase): obj._meta.groupby(by._meta, **_as_dict("observed", observed)) elif isinstance(by, (list, tuple)) and any( isinstance(x, FrameBase) for x in by ): metas = [x._meta if isinstance(x, FrameBase) else x for x in by] obj._meta.groupby(metas, **_as_dict("observed", observed)) elif isinstance(by, list): if len(by) == 0: raise ValueError("No group keys passed!") non_series_items = [item for item in by if not isinstance(item, Series)] obj._meta.groupby(non_series_items, **_as_dict("observed", observed)) else: obj._meta.groupby(by, **_as_dict("observed", observed)) super().__init__( obj, by=by, slice=slice, observed=observed, dropna=dropna, sort=sort ) @derived_from(pd.core.groupby.SeriesGroupBy) def value_counts(self, **kwargs): return self._single_agg(ValueCounts, **kwargs) @derived_from(pd.core.groupby.SeriesGroupBy) def unique(self, **kwargs): return self._single_agg(Unique, **kwargs)
[docs] def idxmin( self, split_every=None, split_out=None, skipna=True, numeric_only=False, **kwargs, ): # pandas doesn't support numeric_only here, which is odd return self._single_agg( IdxMin, split_every=None, split_out=split_out, chunk_kwargs=dict(skipna=skipna), )
[docs] def idxmax( self, split_every=None, split_out=None, skipna=True, numeric_only=False, **kwargs, ): # pandas doesn't support numeric_only here, which is odd return self._single_agg( IdxMax, split_every=split_every, split_out=split_out, chunk_kwargs=dict(skipna=skipna), )
[docs] @derived_from(pd.core.groupby.SeriesGroupBy) def nunique(self, split_every=None, split_out=True, shuffle_method=None): """ Examples -------- >>> import pandas as pd >>> import dask.dataframe as dd >>> d = {'col1': [1, 2, 3, 4], 'col2': [5, 6, 7, 8]} >>> df = pd.DataFrame(data=d) >>> ddf = dd.from_pandas(df, 2) >>> ddf.groupby(['col1']).col2.nunique().compute() """ slice = self._slice or self.obj.name return new_collection( NUnique( self.obj.expr, self.observed, self.dropna, None, None, slice, split_every, split_out, self.sort, get_specified_shuffle(shuffle_method), *self.by, ) )
def cov(self, *args, **kwargs): raise NotImplementedError("cov is not implemented for SeriesGroupBy objects.") def corr(self, *args, **kwargs): raise NotImplementedError("cov is not implemented for SeriesGroupBy objects.") def _all_numeric(self): return True