dask_expr._collection.Index.apply
dask_expr._collection.Index.apply¶
- Index.apply(function, *args, meta=_NoDefault.no_default, axis=0, **kwargs)¶
Parallel version of pandas.Series.apply
- Parameters
- funcfunction
Function to apply
- metapd.DataFrame, pd.Series, dict, iterable, tuple, optional
An empty
pd.DataFrame
orpd.Series
that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of aDataFrame
, adict
of{name: dtype}
or iterable of(name, dtype)
can be provided (note that the order of the names should match the order of the columns). Instead of a series, a tuple of(name, dtype)
can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providingmeta
is recommended. For more information, seedask.dataframe.utils.make_meta
.- argstuple
Positional arguments to pass to function in addition to the value.
- Additional keyword arguments will be passed as keywords to the function.
- Returns
- appliedSeries or DataFrame if func returns a Series.
See also
Examples
>>> import dask.dataframe as dd >>> s = pd.Series(range(5), name='x') >>> ds = dd.from_pandas(s, npartitions=2)
Apply a function elementwise across the Series, passing in extra arguments in
args
andkwargs
:>>> def myadd(x, a, b=1): ... return x + a + b >>> res = ds.apply(myadd, args=(2,), b=1.5)
By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the
meta
keyword. This can be specified in many forms, for more information seedask.dataframe.utils.make_meta
.Here we specify the output is a Series with name
'x'
, and dtypefloat64
:>>> res = ds.apply(myadd, args=(2,), b=1.5, meta=('x', 'f8'))
In the case where the metadata doesn’t change, you can also pass in the object itself directly:
>>> res = ds.apply(lambda x: x + 1, meta=ds)