Source code for dask.array.reductions

from __future__ import annotations

import builtins
import math
import operator
import warnings
from collections.abc import Iterable
from functools import partial, reduce
from itertools import product, repeat
from numbers import Integral, Number
from operator import mul

import numpy as np
from packaging.version import Version
from tlz import accumulate, drop, pluck

import dask.array as da
from dask.array import chunk
from dask.array.core import (
    Array,
    _concatenate2,
    handle_out,
    implements,
    unknown_chunk_message,
)
from dask.array.creation import arange, diagonal
from dask.array.dispatch import divide_lookup, nannumel_lookup, numel_lookup
from dask.array.numpy_compat import NUMPY_GE_200
from dask.array.utils import (
    array_safe,
    asarray_safe,
    is_arraylike,
    meta_from_array,
    validate_axis,
)
from dask.array.wrap import ones, zeros
from dask.base import tokenize
from dask.highlevelgraph import HighLevelGraph
from dask.utils import apply, deepmap, derived_from

try:
    import numbagg
except ImportError:
    numbagg = None

if da._array_expr_enabled():
    from dask.array._array_expr import _tree_reduce, reduction
else:
    from dask.array._reductions_generic import _tree_reduce, reduction


def divide(a, b, dtype=None):
    key = lambda x: getattr(x, "__array_priority__", float("-inf"))
    f = divide_lookup.dispatch(type(builtins.max(a, b, key=key)))
    return f(a, b, dtype=dtype)


def numel(x, **kwargs):
    return numel_lookup(x, **kwargs)


def nannumel(x, **kwargs):
    return nannumel_lookup(x, **kwargs)


[docs]@derived_from(np) def sum(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None): if dtype is None: dtype = getattr(np.zeros(1, dtype=a.dtype).sum(), "dtype", object) result = reduction( a, chunk.sum, chunk.sum, axis=axis, keepdims=keepdims, dtype=dtype, split_every=split_every, out=out, ) return result
[docs]@derived_from(np) def prod(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None): if dtype is not None: dt = dtype else: dt = getattr(np.ones((1,), dtype=a.dtype).prod(), "dtype", object) return reduction( a, chunk.prod, chunk.prod, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, out=out, )
[docs]@implements(np.min, np.amin) @derived_from(np) def min(a, axis=None, keepdims=False, split_every=None, out=None): return reduction( a, chunk_min, chunk.min, combine=chunk_min, axis=axis, keepdims=keepdims, dtype=a.dtype, split_every=split_every, out=out, )
def chunk_min(x, axis=None, keepdims=None): """Version of np.min which ignores size 0 arrays""" if x.size == 0: return array_safe([], x, ndmin=x.ndim, dtype=x.dtype) else: return np.min(x, axis=axis, keepdims=keepdims)
[docs]@implements(np.max, np.amax) @derived_from(np) def max(a, axis=None, keepdims=False, split_every=None, out=None): return reduction( a, chunk_max, chunk.max, combine=chunk_max, axis=axis, keepdims=keepdims, dtype=a.dtype, split_every=split_every, out=out, )
def chunk_max(x, axis=None, keepdims=None): """Version of np.max which ignores size 0 arrays""" if x.size == 0: return array_safe([], x, ndmin=x.ndim, dtype=x.dtype) else: return np.max(x, axis=axis, keepdims=keepdims)
[docs]@derived_from(np) def any(a, axis=None, keepdims=False, split_every=None, out=None): return reduction( a, chunk.any, chunk.any, axis=axis, keepdims=keepdims, dtype="bool", split_every=split_every, out=out, )
[docs]@derived_from(np) def all(a, axis=None, keepdims=False, split_every=None, out=None): return reduction( a, chunk.all, chunk.all, axis=axis, keepdims=keepdims, dtype="bool", split_every=split_every, out=out, )
[docs]@derived_from(np) def nansum(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None): if dtype is not None: dt = dtype else: dt = getattr(chunk.nansum(np.ones((1,), dtype=a.dtype)), "dtype", object) return reduction( a, chunk.nansum, chunk.sum, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, out=out, )
[docs]@derived_from(np) def nanprod(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None): if dtype is not None: dt = dtype else: dt = getattr(chunk.nansum(np.ones((1,), dtype=a.dtype)), "dtype", object) return reduction( a, chunk.nanprod, chunk.prod, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, out=out, )
[docs]@derived_from(np) def nancumsum(x, axis, dtype=None, out=None, *, method="sequential"): """Dask added an additional keyword-only argument ``method``. method : {'sequential', 'blelloch'}, optional Choose which method to use to perform the cumsum. Default is 'sequential'. * 'sequential' performs the cumsum of each prior block before the current block. * 'blelloch' is a work-efficient parallel cumsum. It exposes parallelism by first taking the sum of each block and combines the sums via a binary tree. This method may be faster or more memory efficient depending on workload, scheduler, and hardware. More benchmarking is necessary. """ return cumreduction( chunk.nancumsum, operator.add, 0, x, axis, dtype, out=out, method=method, preop=np.nansum, )
[docs]@derived_from(np) def nancumprod(x, axis, dtype=None, out=None, *, method="sequential"): """Dask added an additional keyword-only argument ``method``. method : {'sequential', 'blelloch'}, optional Choose which method to use to perform the cumprod. Default is 'sequential'. * 'sequential' performs the cumprod of each prior block before the current block. * 'blelloch' is a work-efficient parallel cumprod. It exposes parallelism by first taking the product of each block and combines the products via a binary tree. This method may be faster or more memory efficient depending on workload, scheduler, and hardware. More benchmarking is necessary. """ return cumreduction( chunk.nancumprod, operator.mul, 1, x, axis, dtype, out=out, method=method, preop=np.nanprod, )
[docs]@derived_from(np) def nanmin(a, axis=None, keepdims=False, split_every=None, out=None): if np.isnan(a.size): raise ValueError(f"Arrays chunk sizes are unknown. {unknown_chunk_message}") if a.size == 0: raise ValueError( "zero-size array to reduction operation fmin which has no identity" ) return reduction( a, _nanmin_skip, _nanmin_skip, axis=axis, keepdims=keepdims, dtype=a.dtype, split_every=split_every, out=out, )
def _nanmin_skip(x_chunk, axis, keepdims): if x_chunk.size > 0: with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "All-NaN slice encountered", RuntimeWarning ) return np.nanmin(x_chunk, axis=axis, keepdims=keepdims) else: return asarray_safe( np.array([], dtype=x_chunk.dtype), like=meta_from_array(x_chunk) )
[docs]@derived_from(np) def nanmax(a, axis=None, keepdims=False, split_every=None, out=None): if np.isnan(a.size): raise ValueError(f"Arrays chunk sizes are unknown. {unknown_chunk_message}") if a.size == 0: raise ValueError( "zero-size array to reduction operation fmax which has no identity" ) return reduction( a, _nanmax_skip, _nanmax_skip, axis=axis, keepdims=keepdims, dtype=a.dtype, split_every=split_every, out=out, )
def _nanmax_skip(x_chunk, axis, keepdims): if x_chunk.size > 0: with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "All-NaN slice encountered", RuntimeWarning ) return np.nanmax(x_chunk, axis=axis, keepdims=keepdims) else: return asarray_safe( np.array([], dtype=x_chunk.dtype), like=meta_from_array(x_chunk) ) def mean_chunk( x, sum=chunk.sum, numel=numel, dtype="f8", computing_meta=False, **kwargs ): if computing_meta: return x n = numel(x, dtype=dtype, **kwargs) total = sum(x, dtype=dtype, **kwargs) return {"n": n, "total": total} def mean_combine( pairs, sum=chunk.sum, numel=numel, dtype="f8", axis=None, computing_meta=False, **kwargs, ): if not isinstance(pairs, list): pairs = [pairs] ns = deepmap(lambda pair: pair["n"], pairs) if not computing_meta else pairs n = _concatenate2(ns, axes=axis).sum(axis=axis, **kwargs) if computing_meta: return n totals = deepmap(lambda pair: pair["total"], pairs) total = _concatenate2(totals, axes=axis).sum(axis=axis, **kwargs) return {"n": n, "total": total} def mean_agg(pairs, dtype="f8", axis=None, computing_meta=False, **kwargs): ns = deepmap(lambda pair: pair["n"], pairs) if not computing_meta else pairs n = _concatenate2(ns, axes=axis) n = np.sum(n, axis=axis, dtype=dtype, **kwargs) if computing_meta: return n totals = deepmap(lambda pair: pair["total"], pairs) total = _concatenate2(totals, axes=axis).sum(axis=axis, dtype=dtype, **kwargs) with np.errstate(divide="ignore", invalid="ignore"): return divide(total, n, dtype=dtype)
[docs]@derived_from(np) def mean(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None): if dtype is not None: dt = dtype elif a.dtype == object: dt = object else: dt = getattr(np.mean(np.zeros(shape=(1,), dtype=a.dtype)), "dtype", object) return reduction( a, mean_chunk, mean_agg, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=mean_combine, out=out, concatenate=False, )
[docs]@derived_from(np) def nanmean(a, axis=None, dtype=None, keepdims=False, split_every=None, out=None): if dtype is not None: dt = dtype else: dt = getattr(np.mean(np.ones(shape=(1,), dtype=a.dtype)), "dtype", object) return reduction( a, partial(mean_chunk, sum=chunk.nansum, numel=nannumel), mean_agg, axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, out=out, concatenate=False, combine=partial(mean_combine, sum=chunk.nansum, numel=nannumel), )
def moment_chunk( A, order=2, sum=chunk.sum, numel=numel, dtype="f8", computing_meta=False, implicit_complex_dtype=False, **kwargs, ): if computing_meta: return A n = numel(A, **kwargs) n = n.astype(np.int64) if implicit_complex_dtype: total = sum(A, **kwargs) else: total = sum(A, dtype=dtype, **kwargs) with np.errstate(divide="ignore", invalid="ignore"): u = total / n d = A - u if np.issubdtype(A.dtype, np.complexfloating): d = np.abs(d) xs = [sum(d**i, dtype=dtype, **kwargs) for i in range(2, order + 1)] M = np.stack(xs, axis=-1) return {"total": total, "n": n, "M": M} def _moment_helper(Ms, ns, inner_term, order, sum, axis, kwargs): M = Ms[..., order - 2].sum(axis=axis, **kwargs) + sum( ns * inner_term**order, axis=axis, **kwargs ) for k in range(1, order - 1): coeff = math.factorial(order) / (math.factorial(k) * math.factorial(order - k)) M += coeff * sum(Ms[..., order - k - 2] * inner_term**k, axis=axis, **kwargs) return M def moment_combine( pairs, order=2, ddof=0, dtype="f8", sum=np.sum, axis=None, computing_meta=False, **kwargs, ): if not isinstance(pairs, list): pairs = [pairs] kwargs["dtype"] = None kwargs["keepdims"] = True ns = deepmap(lambda pair: pair["n"], pairs) if not computing_meta else pairs ns = _concatenate2(ns, axes=axis) n = ns.sum(axis=axis, **kwargs) if computing_meta: return n totals = _concatenate2(deepmap(lambda pair: pair["total"], pairs), axes=axis) Ms = _concatenate2(deepmap(lambda pair: pair["M"], pairs), axes=axis) total = totals.sum(axis=axis, **kwargs) with np.errstate(divide="ignore", invalid="ignore"): if np.issubdtype(total.dtype, np.complexfloating): mu = divide(total, n) inner_term = np.abs(divide(totals, ns) - mu) else: mu = divide(total, n, dtype=dtype) inner_term = divide(totals, ns, dtype=dtype) - mu xs = [ _moment_helper(Ms, ns, inner_term, o, sum, axis, kwargs) for o in range(2, order + 1) ] M = np.stack(xs, axis=-1) return {"total": total, "n": n, "M": M} def moment_agg( pairs, order=2, ddof=0, dtype="f8", sum=np.sum, axis=None, computing_meta=False, **kwargs, ): if not isinstance(pairs, list): pairs = [pairs] kwargs["dtype"] = dtype # To properly handle ndarrays, the original dimensions need to be kept for # part of the calculation. keepdim_kw = kwargs.copy() keepdim_kw["keepdims"] = True keepdim_kw["dtype"] = None ns = deepmap(lambda pair: pair["n"], pairs) if not computing_meta else pairs ns = _concatenate2(ns, axes=axis) n = ns.sum(axis=axis, **keepdim_kw) if computing_meta: return n totals = _concatenate2(deepmap(lambda pair: pair["total"], pairs), axes=axis) Ms = _concatenate2(deepmap(lambda pair: pair["M"], pairs), axes=axis) mu = divide(totals.sum(axis=axis, **keepdim_kw), n) with np.errstate(divide="ignore", invalid="ignore"): if np.issubdtype(totals.dtype, np.complexfloating): inner_term = np.abs(divide(totals, ns) - mu) else: inner_term = divide(totals, ns, dtype=dtype) - mu M = _moment_helper(Ms, ns, inner_term, order, sum, axis, kwargs) denominator = n.sum(axis=axis, **kwargs) - ddof # taking care of the edge case with empty or all-nans array with ddof > 0 if isinstance(denominator, Number): if denominator < 0: denominator = np.nan elif denominator is not np.ma.masked: denominator[denominator < 0] = np.nan return divide(M, denominator, dtype=dtype)
[docs]def moment( a, order, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None, out=None ): """Calculate the nth centralized moment. Parameters ---------- a : Array Data over which to compute moment order : int Order of the moment that is returned, must be >= 2. axis : int, optional Axis along which the central moment is computed. The default is to compute the moment of the flattened array. dtype : data-type, optional Type to use in computing the moment. For arrays of integer type the default is float64; for arrays of float types it is the same as the array type. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array. ddof : int, optional "Delta Degrees of Freedom": the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is zero. Returns ------- moment : Array References ---------- .. [1] Pebay, Philippe (2008), "Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments", Technical Report SAND2008-6212, Sandia National Laboratories. """ if not isinstance(order, Integral) or order < 0: raise ValueError("Order must be an integer >= 0") if order < 2: reduced = a.sum(axis=axis) # get reduced shape and chunks if order == 0: # When order equals 0, the result is 1, by definition. return ones( reduced.shape, chunks=reduced.chunks, dtype="f8", meta=reduced._meta ) # By definition the first order about the mean is 0. return zeros( reduced.shape, chunks=reduced.chunks, dtype="f8", meta=reduced._meta ) if dtype is not None: dt = dtype else: dt = getattr(np.var(np.ones(shape=(1,), dtype=a.dtype)), "dtype", object) implicit_complex_dtype = dtype is None and np.iscomplexobj(a) return reduction( a, partial( moment_chunk, order=order, implicit_complex_dtype=implicit_complex_dtype ), partial(moment_agg, order=order, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, out=out, concatenate=False, combine=partial(moment_combine, order=order), )
[docs]@derived_from(np) def var(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None, out=None): if dtype is not None: dt = dtype else: dt = getattr(np.var(np.ones(shape=(1,), dtype=a.dtype)), "dtype", object) implicit_complex_dtype = dtype is None and np.iscomplexobj(a) return reduction( a, partial(moment_chunk, implicit_complex_dtype=implicit_complex_dtype), partial(moment_agg, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=moment_combine, name="var", out=out, concatenate=False, )
[docs]@derived_from(np) def nanvar( a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None, out=None ): if dtype is not None: dt = dtype else: dt = getattr(np.var(np.ones(shape=(1,), dtype=a.dtype)), "dtype", object) implicit_complex_dtype = dtype is None and np.iscomplexobj(a) return reduction( a, partial( moment_chunk, sum=chunk.nansum, numel=nannumel, implicit_complex_dtype=implicit_complex_dtype, ), partial(moment_agg, sum=np.nansum, ddof=ddof), axis=axis, keepdims=keepdims, dtype=dt, split_every=split_every, combine=partial(moment_combine, sum=np.nansum), out=out, concatenate=False, )
def _sqrt(a): if isinstance(a, np.ma.masked_array) and not a.shape and a.mask.all(): return np.ma.masked return np.sqrt(a) def safe_sqrt(a): """A version of sqrt that properly handles scalar masked arrays. To mimic ``np.ma`` reductions, we need to convert scalar masked arrays that have an active mask to the ``np.ma.masked`` singleton. This is properly handled automatically for reduction code, but not for ufuncs. We implement a simple version here, since calling `np.ma.sqrt` everywhere is significantly more expensive. """ if hasattr(a, "_elemwise"): return a._elemwise(_sqrt, a) return _sqrt(a)
[docs]@derived_from(np) def std(a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None, out=None): result = safe_sqrt( var( a, axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof, split_every=split_every, out=out, ) ) if dtype and dtype != result.dtype: result = result.astype(dtype) return result
[docs]@derived_from(np) def nanstd( a, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None, out=None ): result = safe_sqrt( nanvar( a, axis=axis, dtype=dtype, keepdims=keepdims, ddof=ddof, split_every=split_every, out=out, ) ) if dtype and dtype != result.dtype: result = result.astype(dtype) return result
def _arg_combine(data, axis, argfunc, keepdims=False): """Merge intermediate results from ``arg_*`` functions""" if isinstance(data, dict): # Array type doesn't support structured arrays (e.g., CuPy), # therefore `data` is stored in a `dict`. assert data["vals"].ndim == data["arg"].ndim axis = ( None if len(axis) == data["vals"].ndim or data["vals"].ndim == 1 else axis[0] ) else: axis = None if len(axis) == data.ndim or data.ndim == 1 else axis[0] vals = data["vals"] arg = data["arg"] if axis is None: local_args = argfunc(vals, axis=axis, keepdims=keepdims) vals = vals.ravel()[local_args] arg = arg.ravel()[local_args] else: local_args = argfunc(vals, axis=axis) inds = list(np.ogrid[tuple(map(slice, local_args.shape))]) inds.insert(axis, local_args) inds = tuple(inds) vals = vals[inds] arg = arg[inds] if keepdims: vals = np.expand_dims(vals, axis) arg = np.expand_dims(arg, axis) return arg, vals def arg_chunk(func, argfunc, x, axis, offset_info): arg_axis = None if len(axis) == x.ndim or x.ndim == 1 else axis[0] vals = func(x, axis=arg_axis, keepdims=True) arg = argfunc(x, axis=arg_axis, keepdims=True) if x.ndim > 0: if arg_axis is None: offset, total_shape = offset_info ind = np.unravel_index(arg.ravel()[0], x.shape) total_ind = tuple(o + i for (o, i) in zip(offset, ind)) arg[:] = np.ravel_multi_index(total_ind, total_shape) else: arg += offset_info if isinstance(vals, np.ma.masked_array): if "min" in argfunc.__name__: fill_value = np.ma.minimum_fill_value(vals) else: fill_value = np.ma.maximum_fill_value(vals) vals = np.ma.filled(vals, fill_value) try: result = np.empty_like( vals, shape=vals.shape, dtype=[("vals", vals.dtype), ("arg", arg.dtype)] ) except TypeError: # Array type doesn't support structured arrays (e.g., CuPy) result = dict() result["vals"] = vals result["arg"] = arg return result def arg_combine(argfunc, data, axis=None, **kwargs): arg, vals = _arg_combine(data, axis, argfunc, keepdims=True) try: result = np.empty_like( vals, shape=vals.shape, dtype=[("vals", vals.dtype), ("arg", arg.dtype)] ) except TypeError: # Array type doesn't support structured arrays (e.g., CuPy). result = dict() result["vals"] = vals result["arg"] = arg return result def arg_agg(argfunc, data, axis=None, keepdims=False, **kwargs): return _arg_combine(data, axis, argfunc, keepdims=keepdims)[0] def nanarg_agg(argfunc, data, axis=None, keepdims=False, **kwargs): arg, vals = _arg_combine(data, axis, argfunc, keepdims=keepdims) if np.any(np.isnan(vals)): raise ValueError("All NaN slice encountered") return arg def arg_reduction( x, chunk, combine, agg, axis=None, keepdims=False, split_every=None, out=None ): """Generic function for argreduction. Parameters ---------- x : Array chunk : callable Partialed ``arg_chunk``. combine : callable Partialed ``arg_combine``. agg : callable Partialed ``arg_agg``. axis : int, optional split_every : int or dict, optional """ if axis is None: axis = tuple(range(x.ndim)) ravel = True elif isinstance(axis, Integral): axis = validate_axis(axis, x.ndim) axis = (axis,) ravel = x.ndim == 1 else: raise TypeError(f"axis must be either `None` or int, got '{axis}'") for ax in axis: chunks = x.chunks[ax] if len(chunks) > 1 and np.isnan(chunks).any(): raise ValueError( "Arg-reductions do not work with arrays that have " "unknown chunksizes. At some point in your computation " "this array lost chunking information.\n\n" "A possible solution is with \n" " x.compute_chunk_sizes()" ) # Map chunk across all blocks name = f"arg-reduce-{tokenize(axis, x, chunk, combine, split_every)}" old = x.name keys = list(product(*map(range, x.numblocks))) offsets = list(product(*(accumulate(operator.add, bd[:-1], 0) for bd in x.chunks))) if ravel: offset_info = zip(offsets, repeat(x.shape)) else: offset_info = pluck(axis[0], offsets) chunks = tuple((1,) * len(c) if i in axis else c for (i, c) in enumerate(x.chunks)) dsk = { (name,) + k: (chunk, (old,) + k, axis, off) for (k, off) in zip(keys, offset_info) } dtype = np.argmin(asarray_safe([1], like=meta_from_array(x))) meta = None if is_arraylike(dtype): # This case occurs on non-NumPy types (e.g., CuPy), where the returned # value is an ndarray rather than a scalar. meta = dtype dtype = meta.dtype graph = HighLevelGraph.from_collections(name, dsk, dependencies=[x]) tmp = Array(graph, name, chunks, dtype=dtype, meta=meta) result = _tree_reduce( tmp, agg, axis, keepdims=keepdims, dtype=dtype, split_every=split_every, combine=combine, ) return handle_out(out, result) def _nanargmin(x, axis, **kwargs): try: return chunk.nanargmin(x, axis, **kwargs) except ValueError: return chunk.nanargmin(np.where(np.isnan(x), np.inf, x), axis, **kwargs) def _nanargmax(x, axis, **kwargs): try: return chunk.nanargmax(x, axis, **kwargs) except ValueError: return chunk.nanargmax(np.where(np.isnan(x), -np.inf, x), axis, **kwargs)
[docs]@derived_from(np) def argmax(a, axis=None, keepdims=False, split_every=None, out=None): return arg_reduction( a, partial(arg_chunk, chunk.max, chunk.argmax), partial(arg_combine, chunk.argmax), partial(arg_agg, chunk.argmax), axis=axis, keepdims=keepdims, split_every=split_every, out=out, )
[docs]@derived_from(np) def argmin(a, axis=None, keepdims=False, split_every=None, out=None): return arg_reduction( a, partial(arg_chunk, chunk.min, chunk.argmin), partial(arg_combine, chunk.argmin), partial(arg_agg, chunk.argmin), axis=axis, keepdims=keepdims, split_every=split_every, out=out, )
[docs]@derived_from(np) def nanargmax(a, axis=None, keepdims=False, split_every=None, out=None): return arg_reduction( a, partial(arg_chunk, chunk.nanmax, _nanargmax), partial(arg_combine, _nanargmax), partial(nanarg_agg, _nanargmax), axis=axis, keepdims=keepdims, split_every=split_every, out=out, )
[docs]@derived_from(np) def nanargmin(a, axis=None, keepdims=False, split_every=None, out=None): return arg_reduction( a, partial(arg_chunk, chunk.nanmin, _nanargmin), partial(arg_combine, _nanargmin), partial(nanarg_agg, _nanargmin), axis=axis, keepdims=keepdims, split_every=split_every, out=out, )
def _prefixscan_combine(func, binop, pre, x, axis, dtype): """Combine results of a parallel prefix scan such as cumsum Parameters ---------- func : callable Cumulative function (e.g. ``np.cumsum``) binop : callable Associative function (e.g. ``add``) pre : np.array The value calculated in parallel from ``preop``. For example, the sum of all the previous blocks. x : np.array Current block axis : int dtype : dtype Returns ------- np.array """ # We could compute this in two tasks. # This would allow us to do useful work (i.e., func), while waiting on `pre`. # Using one task may guide the scheduler to do better and reduce scheduling overhead. return binop(pre, func(x, axis=axis, dtype=dtype)) def _prefixscan_first(func, x, axis, dtype): """Compute the prefix scan (e.g., cumsum) on the first block Parameters ---------- func : callable Cumulative function (e.g. ``np.cumsum``) x : np.array Current block axis : int dtype : dtype Returns ------- np.array """ return func(x, axis=axis, dtype=dtype) def prefixscan_blelloch(func, preop, binop, x, axis=None, dtype=None, out=None): """Generic function to perform parallel cumulative scan (a.k.a prefix scan) The Blelloch prefix scan is work-efficient and exposes parallelism. A parallel cumsum works by first taking the sum of each block, then do a binary tree merge followed by a fan-out (i.e., the Brent-Kung pattern). We then take the cumsum of each block and add the sum of the previous blocks. When performing a cumsum across N chunks, this method has 2 * lg(N) levels of dependencies. In contrast, the sequential method has N levels of dependencies. Floating point operations should be more accurate with this method compared to sequential. Parameters ---------- func : callable Cumulative function (e.g. ``np.cumsum``) preop : callable Function to get the final value of a cumulative function (e.g., ``np.sum``) binop : callable Associative function (e.g. ``add``) x : dask array axis : int dtype : dtype Returns ------- dask array """ if axis is None: x = x.flatten().rechunk(chunks=x.npartitions) axis = 0 if dtype is None: dtype = getattr(func(np.ones((0,), dtype=x.dtype)), "dtype", object) assert isinstance(axis, Integral) axis = validate_axis(axis, x.ndim) name = f"{func.__name__}-{tokenize(func, axis, preop, binop, x, dtype)}" base_key = (name,) # Right now, the metadata for batches is incorrect, but this should be okay batches = x.map_blocks(preop, axis=axis, keepdims=True, dtype=dtype) # We don't need the last index until the end *indices, last_index = full_indices = [ list( product( *[range(nb) if j != axis else [i] for j, nb in enumerate(x.numblocks)] ) ) for i in range(x.numblocks[axis]) ] prefix_vals = [[(batches.name,) + index for index in vals] for vals in indices] dsk = {} n_vals = len(prefix_vals) level = 0 if n_vals >= 2: # Upsweep stride = 1 stride2 = 2 while stride2 <= n_vals: for i in range(stride2 - 1, n_vals, stride2): new_vals = [] for index, left_val, right_val in zip( indices[i], prefix_vals[i - stride], prefix_vals[i] ): key = base_key + index + (level, i) dsk[key] = (binop, left_val, right_val) new_vals.append(key) prefix_vals[i] = new_vals stride = stride2 stride2 *= 2 level += 1 # Downsweep # With `n_vals == 3`, we would have `stride = 1` and `stride = 0`, but we need # to do a downsweep iteration, so make sure stride2 is at least 2. stride2 = builtins.max(2, 2 ** math.ceil(math.log2(n_vals // 2))) stride = stride2 // 2 while stride > 0: for i in range(stride2 + stride - 1, n_vals, stride2): new_vals = [] for index, left_val, right_val in zip( indices[i], prefix_vals[i - stride], prefix_vals[i] ): key = base_key + index + (level, i) dsk[key] = (binop, left_val, right_val) new_vals.append(key) prefix_vals[i] = new_vals stride2 = stride stride //= 2 level += 1 if full_indices: for index in full_indices[0]: dsk[base_key + index] = ( _prefixscan_first, func, (x.name,) + index, axis, dtype, ) for indexes, vals in zip(drop(1, full_indices), prefix_vals): for index, val in zip(indexes, vals): dsk[base_key + index] = ( _prefixscan_combine, func, binop, val, (x.name,) + index, axis, dtype, ) if len(full_indices) < 2: deps = [x] else: deps = [x, batches] graph = HighLevelGraph.from_collections(name, dsk, dependencies=deps) result = Array(graph, name, x.chunks, batches.dtype) return handle_out(out, result) def cumreduction( func, binop, ident, x, axis=None, dtype=None, out=None, method="sequential", preop=None, ): """Generic function for cumulative reduction Parameters ---------- func: callable Cumulative function like np.cumsum or np.cumprod binop: callable Associated binary operator like ``np.cumsum->add`` or ``np.cumprod->mul`` ident: Number Associated identity like ``np.cumsum->0`` or ``np.cumprod->1`` x: dask Array axis: int dtype: dtype method : {'sequential', 'blelloch'}, optional Choose which method to use to perform the cumsum. Default is 'sequential'. * 'sequential' performs the scan of each prior block before the current block. * 'blelloch' is a work-efficient parallel scan. It exposes parallelism by first calling ``preop`` on each block and combines the values via a binary tree. This method may be faster or more memory efficient depending on workload, scheduler, and hardware. More benchmarking is necessary. preop: callable, optional Function used by 'blelloch' method, like ``np.cumsum->np.sum`` or ``np.cumprod->np.prod`` Returns ------- dask array See also -------- cumsum cumprod """ if method == "blelloch": if preop is None: raise TypeError( 'cumreduction with "blelloch" method required `preop=` argument' ) return prefixscan_blelloch(func, preop, binop, x, axis, dtype, out=out) elif method != "sequential": raise ValueError( f'Invalid method for cumreduction. Expected "sequential" or "blelloch". Got: {method!r}' ) if axis is None: if x.ndim > 1: x = x.flatten().rechunk(chunks=x.npartitions) axis = 0 if dtype is None: dtype = getattr(func(np.ones((0,), dtype=x.dtype)), "dtype", object) assert isinstance(axis, Integral) axis = validate_axis(axis, x.ndim) m = x.map_blocks(func, axis=axis, dtype=dtype) name = f"{func.__name__}-{tokenize(func, axis, binop, ident, x, dtype)}" n = x.numblocks[axis] full = slice(None, None, None) slc = (full,) * axis + (slice(-1, None),) + (full,) * (x.ndim - axis - 1) indices = list( product(*[range(nb) if i != axis else [0] for i, nb in enumerate(x.numblocks)]) ) dsk = dict() for ind in indices: shape = tuple(x.chunks[i][ii] if i != axis else 1 for i, ii in enumerate(ind)) dsk[(name, "extra") + ind] = ( apply, np.full_like, (x._meta, ident, m.dtype), {"shape": shape}, ) dsk[(name,) + ind] = (m.name,) + ind for i in range(1, n): last_indices = indices indices = list( product( *[range(nb) if ii != axis else [i] for ii, nb in enumerate(x.numblocks)] ) ) for old, ind in zip(last_indices, indices): this_slice = (name, "extra") + ind dsk[this_slice] = ( binop, (name, "extra") + old, (operator.getitem, (m.name,) + old, slc), ) dsk[(name,) + ind] = (binop, this_slice, (m.name,) + ind) graph = HighLevelGraph.from_collections(name, dsk, dependencies=[m]) result = Array(graph, name, x.chunks, m.dtype, meta=x._meta) return handle_out(out, result) def _cumsum_merge(a, b): if isinstance(a, np.ma.masked_array) or isinstance(b, np.ma.masked_array): values = np.ma.getdata(a) + np.ma.getdata(b) return np.ma.masked_array(values, mask=np.ma.getmaskarray(b)) return a + b def _cumprod_merge(a, b): if isinstance(a, np.ma.masked_array) or isinstance(b, np.ma.masked_array): values = np.ma.getdata(a) * np.ma.getdata(b) return np.ma.masked_array(values, mask=np.ma.getmaskarray(b)) return a * b
[docs]@derived_from(np) def cumsum(x, axis=None, dtype=None, out=None, method="sequential"): """Dask added an additional keyword-only argument ``method``. method : {'sequential', 'blelloch'}, optional Choose which method to use to perform the cumsum. Default is 'sequential'. * 'sequential' performs the cumsum of each prior block before the current block. * 'blelloch' is a work-efficient parallel cumsum. It exposes parallelism by first taking the sum of each block and combines the sums via a binary tree. This method may be faster or more memory efficient depending on workload, scheduler, and hardware. More benchmarking is necessary. """ return cumreduction( np.cumsum, _cumsum_merge, 0, x, axis, dtype, out=out, method=method, preop=np.sum, )
[docs]@derived_from(np) def cumprod(x, axis=None, dtype=None, out=None, method="sequential"): """Dask added an additional keyword-only argument ``method``. method : {'sequential', 'blelloch'}, optional Choose which method to use to perform the cumprod. Default is 'sequential'. * 'sequential' performs the cumprod of each prior block before the current block. * 'blelloch' is a work-efficient parallel cumprod. It exposes parallelism by first taking the product of each block and combines the products via a binary tree. This method may be faster or more memory efficient depending on workload, scheduler, and hardware. More benchmarking is necessary. """ return cumreduction( np.cumprod, _cumprod_merge, 1, x, axis, dtype, out=out, method=method, preop=np.prod, )
[docs]def topk(a, k, axis=-1, split_every=None): """Extract the k largest elements from a on the given axis, and return them sorted from largest to smallest. If k is negative, extract the -k smallest elements instead, and return them sorted from smallest to largest. This performs best when ``k`` is much smaller than the chunk size. All results will be returned in a single chunk along the given axis. Parameters ---------- x: Array Data being sorted k: int axis: int, optional split_every: int >=2, optional See :func:`reduce`. This parameter becomes very important when k is on the same order of magnitude of the chunk size or more, as it prevents getting the whole or a significant portion of the input array in memory all at once, with a negative impact on network transfer too when running on distributed. Returns ------- Selection of x with size abs(k) along the given axis. Examples -------- >>> import dask.array as da >>> x = np.array([5, 1, 3, 6]) >>> d = da.from_array(x, chunks=2) >>> d.topk(2).compute() array([6, 5]) >>> d.topk(-2).compute() array([1, 3]) """ axis = validate_axis(axis, a.ndim) # chunk and combine steps of the reduction, which recursively invoke # np.partition to pick the top/bottom k elements from the previous step. # The selection is not sorted internally. chunk_combine = partial(chunk.topk, k=k) # aggregate step of the reduction. Internally invokes the chunk/combine # function, then sorts the results internally. aggregate = partial(chunk.topk_aggregate, k=k) return reduction( a, chunk=chunk_combine, combine=chunk_combine, aggregate=aggregate, axis=axis, keepdims=True, dtype=a.dtype, split_every=split_every, output_size=abs(k), )
[docs]def argtopk(a, k, axis=-1, split_every=None): """Extract the indices of the k largest elements from a on the given axis, and return them sorted from largest to smallest. If k is negative, extract the indices of the -k smallest elements instead, and return them sorted from smallest to largest. This performs best when ``k`` is much smaller than the chunk size. All results will be returned in a single chunk along the given axis. Parameters ---------- x: Array Data being sorted k: int axis: int, optional split_every: int >=2, optional See :func:`topk`. The performance considerations for topk also apply here. Returns ------- Selection of np.intp indices of x with size abs(k) along the given axis. Examples -------- >>> import dask.array as da >>> x = np.array([5, 1, 3, 6]) >>> d = da.from_array(x, chunks=2) >>> d.argtopk(2).compute() array([3, 0]) >>> d.argtopk(-2).compute() array([1, 2]) """ axis = validate_axis(axis, a.ndim) # Generate nodes where every chunk is a tuple of (a, original index of a) idx = arange(a.shape[axis], chunks=(a.chunks[axis],), dtype=np.intp) idx = idx[tuple(slice(None) if i == axis else np.newaxis for i in range(a.ndim))] a_plus_idx = a.map_blocks(chunk.argtopk_preprocess, idx, dtype=object) # chunk and combine steps of the reduction. They acquire in input a tuple # of (a, original indices of a) and return another tuple containing the top # k elements of a and the matching original indices. The selection is not # sorted internally, as in np.argpartition. chunk_combine = partial(chunk.argtopk, k=k) # aggregate step of the reduction. Internally invokes the chunk/combine # function, then sorts the results internally, drops a and returns the # index only. aggregate = partial(chunk.argtopk_aggregate, k=k) if isinstance(axis, Number): naxis = 1 else: naxis = len(axis) meta = a._meta.astype(np.intp).reshape((0,) * (a.ndim - naxis + 1)) return reduction( a_plus_idx, chunk=chunk_combine, combine=chunk_combine, aggregate=aggregate, axis=axis, keepdims=True, dtype=np.intp, split_every=split_every, concatenate=False, output_size=abs(k), meta=meta, )
[docs]@derived_from(np) def trace(a, offset=0, axis1=0, axis2=1, dtype=None): return diagonal(a, offset=offset, axis1=axis1, axis2=axis2).sum(-1, dtype=dtype)
[docs]@derived_from(np) def median(a, axis=None, keepdims=False, out=None): """ This works by automatically chunking the reduced axes to a single chunk if necessary and then calling ``numpy.median`` function across the remaining dimensions """ if axis is None: raise NotImplementedError( "The da.median function only works along an axis. " "The full algorithm is difficult to do in parallel" ) if not isinstance(axis, Iterable): axis = (axis,) axis = [ax + a.ndim if ax < 0 else ax for ax in axis] # rechunk if reduced axes are not contained in a single chunk if builtins.any(a.numblocks[ax] > 1 for ax in axis): a = a.rechunk({ax: -1 if ax in axis else "auto" for ax in range(a.ndim)}) result = a.map_blocks( np.median, axis=axis, keepdims=keepdims, drop_axis=axis if not keepdims else None, chunks=( [1 if ax in axis else c for ax, c in enumerate(a.chunks)] if keepdims else None ), ) result = handle_out(out, result) return result
[docs]@derived_from(np) def nanmedian(a, axis=None, keepdims=False, out=None): """ This works by automatically chunking the reduced axes to a single chunk and then calling ``numpy.nanmedian`` function across the remaining dimensions """ if axis is None: raise NotImplementedError( "The da.nanmedian function only works along an axis or a subset of axes. " "The full algorithm is difficult to do in parallel" ) if not isinstance(axis, Iterable): axis = (axis,) axis = [ax + a.ndim if ax < 0 else ax for ax in axis] # rechunk if reduced axes are not contained in a single chunk if builtins.any(a.numblocks[ax] > 1 for ax in axis): a = a.rechunk({ax: -1 if ax in axis else "auto" for ax in range(a.ndim)}) if ( numbagg is not None and Version(numbagg.__version__).release >= (0, 7, 0) and a.dtype.kind in "uif" and not keepdims ): func = numbagg.nanmedian kwargs = {} else: func = np.nanmedian kwargs = {"keepdims": keepdims} result = a.map_blocks( func, axis=axis, drop_axis=axis if not keepdims else None, chunks=( [1 if ax in axis else c for ax, c in enumerate(a.chunks)] if keepdims else None ), **kwargs, ) result = handle_out(out, result) return result
[docs]@derived_from(np) def quantile( a, q, axis=None, out=None, overwrite_input=False, method="linear", keepdims=False, *, weights=None, interpolation=None, ): """ This works by automatically chunking the reduced axes to a single chunk if necessary and then calling ``numpy.quantile`` function across the remaining dimensions """ if axis is None: if any(n_blocks > 1 for n_blocks in a.numblocks): raise NotImplementedError( "The da.quantile function only works along an axis. " "The full algorithm is difficult to do in parallel" ) else: axis = tuple(range(len(a.shape))) if not isinstance(axis, Iterable): axis = (axis,) axis = [ax + a.ndim if ax < 0 else ax for ax in axis] # rechunk if reduced axes are not contained in a single chunk if builtins.any(a.numblocks[ax] > 1 for ax in axis): a = a.rechunk({ax: -1 if ax in axis else "auto" for ax in range(a.ndim)}) if NUMPY_GE_200: kwargs = {"weights": weights} else: kwargs = {} result = a.map_blocks( np.quantile, q=q, method=method, interpolation=interpolation, axis=axis, keepdims=keepdims, drop_axis=axis if not keepdims else None, new_axis=0 if isinstance(q, Iterable) else None, chunks=_get_quantile_chunks(a, q, axis, keepdims), **kwargs, ) result = handle_out(out, result) return result
def _span_indexers(a): # We have to create an indexer so that we can index into every quantile slice # The method relies on the quantile axis being the last axis, which means that # we have to calculate reduce(mul, list(a.shape)[:-1]) number of quantiles # We create an indexer combination for each of these quantiles shapes = 1 if len(a.shape) <= 2 else reduce(mul, list(a.shape)[1:-1]) original_shapes = shapes * a.shape[0] indexers = [tuple(np.repeat(np.arange(a.shape[0]), shapes))] for i in range(1, len(a.shape) - 1): indexer = np.repeat(np.arange(a.shape[i]), shapes // a.shape[i]) indexers.append(tuple(np.tile(indexer, original_shapes // shapes))) shapes //= a.shape[i] return indexers def _custom_quantile( a, q, axis=None, method="linear", interpolation=None, keepdims=False, **kwargs, ): if ( not {method, interpolation}.issubset({"linear", None}) or len(axis) != 1 or axis[0] != len(a.shape) - 1 or len(a.shape) == 1 or a.shape[-1] > 1000 ): # bail to nanquantile. Assumptions are pretty strict for now but we # do cover the xarray.quantile case. return np.nanquantile( a, q, axis=axis, method=method, interpolation=interpolation, keepdims=keepdims, **kwargs, ) # nanquantile in NumPy is pretty slow if the quantile axis is slow because # each quantile has overhead. # This method works around this by calculating the quantile manually. # Steps: # 1. Sort the array along the quantile axis (this is the most expensive step # 2. Calculate which positions are the quantile positions # (respecting NaN values, so each quantile can have a different indexer) # 3. Get the neighboring values of the quantile positions # 4. Perform linear interpolation between the neighboring values # # The main advantage is that we get rid of the overhead, removing GIL blockage # and just generally making things faster. sorted_arr = np.sort(a, axis=-1) indexers = _span_indexers(a) nr_quantiles = len(indexers[0]) is_scalar = False if not isinstance(q, Iterable): is_scalar = True q = [q] quantiles = [] reshape_shapes = (1,) + tuple(sorted_arr.shape[:-1]) + ((1,) if keepdims else ()) for single_q in list(q): i = ( np.ones(nr_quantiles) * (a.shape[-1] - 1) - np.isnan(sorted_arr).sum(axis=-1).reshape(-1) ) * single_q lower_value, higher_value = np.floor(i).astype(int), np.ceil(i).astype(int) # Get neighboring values lower = sorted_arr[tuple(indexers) + (tuple(lower_value),)] higher = sorted_arr[tuple(indexers) + (tuple(higher_value),)] # Perform linear interpolation factor_higher = i - lower_value factor_higher = np.where(factor_higher == 0.0, 1.0, factor_higher) factor_lower = higher_value - i quantiles.append( (higher * factor_higher + lower * factor_lower).reshape(*reshape_shapes) ) if is_scalar: return quantiles[0].squeeze(axis=0) else: return np.concatenate(quantiles, axis=0)
[docs]@derived_from(np) def nanquantile( a, q, axis=None, out=None, overwrite_input=False, method="linear", keepdims=False, *, weights=None, interpolation=None, ): """ This works by automatically chunking the reduced axes to a single chunk and then calling ``numpy.nanquantile`` function across the remaining dimensions """ if axis is None: if any(n_blocks > 1 for n_blocks in a.numblocks): raise NotImplementedError( "The da.nanquantile function only works along an axis. " "The full algorithm is difficult to do in parallel" ) else: axis = tuple(range(len(a.shape))) if not isinstance(axis, Iterable): axis = (axis,) axis = [ax + a.ndim if ax < 0 else ax for ax in axis] # rechunk if reduced axes are not contained in a single chunk if builtins.any(a.numblocks[ax] > 1 for ax in axis): a = a.rechunk({ax: -1 if ax in axis else "auto" for ax in range(a.ndim)}) if ( numbagg is not None and Version(numbagg.__version__).release >= (0, 8, 0) and a.dtype.kind in "uif" and weights is None and method == "linear" and not keepdims ): func = numbagg.nanquantile kwargs = {"quantiles": q} else: func = _custom_quantile kwargs = { "q": q, "method": method, "interpolation": interpolation, "keepdims": keepdims, } if NUMPY_GE_200: kwargs.update({"weights": weights}) result = a.map_blocks( func, axis=axis, drop_axis=axis if not keepdims else None, new_axis=0 if isinstance(q, Iterable) else None, chunks=_get_quantile_chunks(a, q, axis, keepdims), **kwargs, ) result = handle_out(out, result) return result
def _get_quantile_chunks(a, q, axis, keepdims): quantile_chunk = [len(q)] if isinstance(q, Iterable) else [] if keepdims: return quantile_chunk + [ 1 if ax in axis else c for ax, c in enumerate(a.chunks) ] else: return quantile_chunk + [c for ax, c in enumerate(a.chunks) if ax not in axis]