Source code for dask.base

from __future__ import annotations

import dataclasses
import datetime
import decimal
import hashlib
import inspect
import pathlib
import pickle
import types
import uuid
import warnings
from collections import OrderedDict
from collections.abc import Hashable, Iterable, Iterator, Mapping
from concurrent.futures import Executor
from contextlib import contextmanager, suppress
from contextvars import ContextVar
from functools import partial
from numbers import Integral, Number
from operator import getitem
from typing import Any, Literal, TypeVar

import cloudpickle
from tlz import curry, groupby, identity, merge
from tlz.functoolz import Compose

from dask import config, local
from dask._compatibility import EMSCRIPTEN
from dask.core import flatten
from dask.core import get as simple_get
from dask.core import literal, quote
from dask.hashing import hash_buffer_hex
from dask.system import CPU_COUNT
from dask.typing import Key, SchedulerGetCallable
from dask.utils import (
    Dispatch,
    apply,
    ensure_dict,
    is_namedtuple_instance,
    key_split,
    shorten_traceback,
)

_DistributedClient = None
_get_distributed_client = None
_DISTRIBUTED_AVAILABLE = None


def _distributed_available() -> bool:
    # Lazy import in get_scheduler can be expensive
    global _DistributedClient, _get_distributed_client, _DISTRIBUTED_AVAILABLE
    if _DISTRIBUTED_AVAILABLE is not None:
        return _DISTRIBUTED_AVAILABLE  # type: ignore[unreachable]
    try:
        from distributed import Client as _DistributedClient
        from distributed.worker import get_client as _get_distributed_client

        _DISTRIBUTED_AVAILABLE = True
    except ImportError:
        _DISTRIBUTED_AVAILABLE = False
    return _DISTRIBUTED_AVAILABLE


__all__ = (
    "DaskMethodsMixin",
    "annotate",
    "get_annotations",
    "is_dask_collection",
    "compute",
    "persist",
    "optimize",
    "visualize",
    "tokenize",
    "normalize_token",
    "get_collection_names",
    "get_name_from_key",
    "replace_name_in_key",
    "clone_key",
)

_annotations: ContextVar[dict[str, Any]] = ContextVar("annotations", default={})


[docs]def get_annotations() -> dict[str, Any]: """Get current annotations. Returns ------- Dict of all current annotations See Also -------- annotate """ return _annotations.get()
[docs]@contextmanager def annotate(**annotations: Any) -> Iterator[None]: """Context Manager for setting HighLevelGraph Layer annotations. Annotations are metadata or soft constraints associated with tasks that dask schedulers may choose to respect: They signal intent without enforcing hard constraints. As such, they are primarily designed for use with the distributed scheduler. Almost any object can serve as an annotation, but small Python objects are preferred, while large objects such as NumPy arrays are discouraged. Callables supplied as an annotation should take a single *key* argument and produce the appropriate annotation. Individual task keys in the annotated collection are supplied to the callable. Parameters ---------- **annotations : key-value pairs Examples -------- All tasks within array A should have priority 100 and be retried 3 times on failure. >>> import dask >>> import dask.array as da >>> with dask.annotate(priority=100, retries=3): ... A = da.ones((10000, 10000)) Prioritise tasks within Array A on flattened block ID. >>> nblocks = (10, 10) >>> with dask.annotate(priority=lambda k: k[1]*nblocks[1] + k[2]): ... A = da.ones((1000, 1000), chunks=(100, 100)) Annotations may be nested. >>> with dask.annotate(priority=1): ... with dask.annotate(retries=3): ... A = da.ones((1000, 1000)) ... B = A + 1 See Also -------- get_annotations """ # Sanity check annotations used in place of # legacy distributed Client.{submit, persist, compute} keywords if "workers" in annotations: if isinstance(annotations["workers"], (list, set, tuple)): annotations["workers"] = list(annotations["workers"]) elif isinstance(annotations["workers"], str): annotations["workers"] = [annotations["workers"]] elif callable(annotations["workers"]): pass else: raise TypeError( "'workers' annotation must be a sequence of str, a str or a callable, but got %s." % annotations["workers"] ) if ( "priority" in annotations and not isinstance(annotations["priority"], Number) and not callable(annotations["priority"]) ): raise TypeError( "'priority' annotation must be a Number or a callable, but got %s" % annotations["priority"] ) if ( "retries" in annotations and not isinstance(annotations["retries"], Number) and not callable(annotations["retries"]) ): raise TypeError( "'retries' annotation must be a Number or a callable, but got %s" % annotations["retries"] ) if ( "resources" in annotations and not isinstance(annotations["resources"], dict) and not callable(annotations["resources"]) ): raise TypeError( "'resources' annotation must be a dict, but got %s" % annotations["resources"] ) if ( "allow_other_workers" in annotations and not isinstance(annotations["allow_other_workers"], bool) and not callable(annotations["allow_other_workers"]) ): raise TypeError( "'allow_other_workers' annotations must be a bool or a callable, but got %s" % annotations["allow_other_workers"] ) token = _annotations.set(merge(_annotations.get(), annotations)) try: yield finally: _annotations.reset(token)
[docs]def is_dask_collection(x) -> bool: """Returns ``True`` if ``x`` is a dask collection. Parameters ---------- x : Any Object to test. Returns ------- result : bool ``True`` if `x` is a Dask collection. Notes ----- The DaskCollection typing.Protocol implementation defines a Dask collection as a class that returns a Mapping from the ``__dask_graph__`` method. This helper function existed before the implementation of the protocol. """ if ( isinstance(x, type) or not hasattr(x, "__dask_graph__") or not callable(x.__dask_graph__) ): return False pkg_name = getattr(type(x), "__module__", "").split(".")[0] if pkg_name == "dask_expr": # Temporary hack to avoid graph materialization. Note that this won't work with # dask_expr.array objects wrapped by xarray or pint. By the time dask_expr.array # is published, we hope to be able to rewrite this method completely. # Read: https://github.com/dask/dask/pull/10676 return True # xarray, pint, and possibly other wrappers always define a __dask_graph__ method, # but it may return None if they wrap around a non-dask object. # In all known dask collections other than dask-expr, # calling __dask_graph__ is cheap. return x.__dask_graph__() is not None
class DaskMethodsMixin: """A mixin adding standard dask collection methods""" __slots__ = () def visualize(self, filename="mydask", format=None, optimize_graph=False, **kwargs): """Render the computation of this object's task graph using graphviz. Requires ``graphviz`` to be installed. Parameters ---------- filename : str or None, optional The name of the file to write to disk. If the provided `filename` doesn't include an extension, '.png' will be used by default. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. color: {None, 'order'}, optional Options to color nodes. Provide ``cmap=`` keyword for additional colormap **kwargs Additional keyword arguments to forward to ``to_graphviz``. Examples -------- >>> x.visualize(filename='dask.pdf') # doctest: +SKIP >>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See Also -------- dask.visualize dask.dot.dot_graph Notes ----- For more information on optimization see here: https://docs.dask.org/en/latest/optimize.html """ return visualize( self, filename=filename, format=format, optimize_graph=optimize_graph, **kwargs, ) def persist(self, **kwargs): """Persist this dask collection into memory This turns a lazy Dask collection into a Dask collection with the same metadata, but now with the results fully computed or actively computing in the background. The action of function differs significantly depending on the active task scheduler. If the task scheduler supports asynchronous computing, such as is the case of the dask.distributed scheduler, then persist will return *immediately* and the return value's task graph will contain Dask Future objects. However if the task scheduler only supports blocking computation then the call to persist will *block* and the return value's task graph will contain concrete Python results. This function is particularly useful when using distributed systems, because the results will be kept in distributed memory, rather than returned to the local process as with compute. Parameters ---------- scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. **kwargs Extra keywords to forward to the scheduler function. Returns ------- New dask collections backed by in-memory data See Also -------- dask.persist """ (result,) = persist(self, traverse=False, **kwargs) return result def compute(self, **kwargs): """Compute this dask collection This turns a lazy Dask collection into its in-memory equivalent. For example a Dask array turns into a NumPy array and a Dask dataframe turns into a Pandas dataframe. The entire dataset must fit into memory before calling this operation. Parameters ---------- scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. kwargs Extra keywords to forward to the scheduler function. See Also -------- dask.compute """ (result,) = compute(self, traverse=False, **kwargs) return result def __await__(self): try: from distributed import futures_of, wait except ImportError as e: raise ImportError( "Using async/await with dask requires the `distributed` package" ) from e from tornado import gen @gen.coroutine def f(): if futures_of(self): yield wait(self) raise gen.Return(self) return f().__await__() def compute_as_if_collection(cls, dsk, keys, scheduler=None, get=None, **kwargs): """Compute a graph as if it were of type cls. Allows for applying the same optimizations and default scheduler.""" schedule = get_scheduler(scheduler=scheduler, cls=cls, get=get) dsk2 = optimization_function(cls)(dsk, keys, **kwargs) return schedule(dsk2, keys, **kwargs) def dont_optimize(dsk, keys, **kwargs): return dsk def optimization_function(x): return getattr(x, "__dask_optimize__", dont_optimize) def collections_to_dsk(collections, optimize_graph=True, optimizations=(), **kwargs): """ Convert many collections into a single dask graph, after optimization """ from dask.highlevelgraph import HighLevelGraph optimizations = tuple(optimizations) + tuple(config.get("optimizations", ())) if optimize_graph: groups = groupby(optimization_function, collections) graphs = [] for opt, val in groups.items(): dsk, keys = _extract_graph_and_keys(val) dsk = opt(dsk, keys, **kwargs) for opt_inner in optimizations: dsk = opt_inner(dsk, keys, **kwargs) graphs.append(dsk) # Merge all graphs if any(isinstance(graph, HighLevelGraph) for graph in graphs): dsk = HighLevelGraph.merge(*graphs) else: dsk = merge(*map(ensure_dict, graphs)) else: dsk, _ = _extract_graph_and_keys(collections) return dsk def _extract_graph_and_keys(vals): """Given a list of dask vals, return a single graph and a list of keys such that ``get(dsk, keys)`` is equivalent to ``[v.compute() for v in vals]``.""" from dask.highlevelgraph import HighLevelGraph graphs, keys = [], [] for v in vals: graphs.append(v.__dask_graph__()) keys.append(v.__dask_keys__()) if any(isinstance(graph, HighLevelGraph) for graph in graphs): graph = HighLevelGraph.merge(*graphs) else: graph = merge(*map(ensure_dict, graphs)) return graph, keys def unpack_collections(*args, traverse=True): """Extract collections in preparation for compute/persist/etc... Intended use is to find all collections in a set of (possibly nested) python objects, do something to them (compute, etc...), then repackage them in equivalent python objects. Parameters ---------- *args Any number of objects. If it is a dask collection, it's extracted and added to the list of collections returned. By default, python builtin collections are also traversed to look for dask collections (for more information see the ``traverse`` keyword). traverse : bool, optional If True (default), builtin python collections are traversed looking for any dask collections they might contain. Returns ------- collections : list A list of all dask collections contained in ``args`` repack : callable A function to call on the transformed collections to repackage them as they were in the original ``args``. """ collections = [] repack_dsk = {} collections_token = uuid.uuid4().hex def _unpack(expr): if is_dask_collection(expr): tok = tokenize(expr) if tok not in repack_dsk: repack_dsk[tok] = (getitem, collections_token, len(collections)) collections.append(expr) return tok tok = uuid.uuid4().hex if not traverse: tsk = quote(expr) else: # Treat iterators like lists typ = list if isinstance(expr, Iterator) else type(expr) if typ in (list, tuple, set): tsk = (typ, [_unpack(i) for i in expr]) elif typ in (dict, OrderedDict): tsk = (typ, [[_unpack(k), _unpack(v)] for k, v in expr.items()]) elif dataclasses.is_dataclass(expr) and not isinstance(expr, type): tsk = ( apply, typ, (), ( dict, [ [f.name, _unpack(getattr(expr, f.name))] for f in dataclasses.fields(expr) ], ), ) elif is_namedtuple_instance(expr): tsk = (typ, *[_unpack(i) for i in expr]) else: return expr repack_dsk[tok] = tsk return tok out = uuid.uuid4().hex repack_dsk[out] = (tuple, [_unpack(i) for i in args]) def repack(results): dsk = repack_dsk.copy() dsk[collections_token] = quote(results) return simple_get(dsk, out) return collections, repack
[docs]def optimize(*args, traverse=True, **kwargs): """Optimize several dask collections at once. Returns equivalent dask collections that all share the same merged and optimized underlying graph. This can be useful if converting multiple collections to delayed objects, or to manually apply the optimizations at strategic points. Note that in most cases you shouldn't need to call this method directly. Parameters ---------- *args : objects Any number of objects. If a dask object, its graph is optimized and merged with all those of all other dask objects before returning an equivalent dask collection. Non-dask arguments are passed through unchanged. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``optimize``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. optimizations : list of callables, optional Additional optimization passes to perform. **kwargs Extra keyword arguments to forward to the optimization passes. Examples -------- >>> import dask >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> a2, b2 = dask.optimize(a, b) >>> a2.compute() == a.compute() True >>> b2.compute() == b.compute() True """ collections, repack = unpack_collections(*args, traverse=traverse) if not collections: return args dsk = collections_to_dsk(collections, **kwargs) postpersists = [] for a in collections: r, s = a.__dask_postpersist__() postpersists.append(r(dsk, *s)) return repack(postpersists)
[docs]def compute( *args, traverse=True, optimize_graph=True, scheduler=None, get=None, **kwargs ): """Compute several dask collections at once. Parameters ---------- args : object Any number of objects. If it is a dask object, it's computed and the result is returned. By default, python builtin collections are also traversed to look for dask objects (for more information see the ``traverse`` keyword). Non-dask arguments are passed through unchanged. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``compute``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. optimize_graph : bool, optional If True [default], the optimizations for each collection are applied before computation. Otherwise the graph is run as is. This can be useful for debugging. get : ``None`` Should be left to ``None`` The get= keyword has been removed. kwargs Extra keywords to forward to the scheduler function. Examples -------- >>> import dask >>> import dask.array as da >>> a = da.arange(10, chunks=2).sum() >>> b = da.arange(10, chunks=2).mean() >>> dask.compute(a, b) (45, 4.5) By default, dask objects inside python collections will also be computed: >>> dask.compute({'a': a, 'b': b, 'c': 1}) ({'a': 45, 'b': 4.5, 'c': 1},) """ collections, repack = unpack_collections(*args, traverse=traverse) if not collections: return args schedule = get_scheduler( scheduler=scheduler, collections=collections, get=get, ) dsk = collections_to_dsk(collections, optimize_graph, **kwargs) keys, postcomputes = [], [] for x in collections: keys.append(x.__dask_keys__()) postcomputes.append(x.__dask_postcompute__()) with shorten_traceback(): results = schedule(dsk, keys, **kwargs) return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)])
[docs]def visualize( *args, filename="mydask", traverse=True, optimize_graph=False, maxval=None, engine: Literal["cytoscape", "ipycytoscape", "graphviz"] | None = None, **kwargs, ): """ Visualize several dask graphs simultaneously. Requires ``graphviz`` to be installed. All options that are not the dask graph(s) should be passed as keyword arguments. Parameters ---------- args : object Any number of objects. If it is a dask collection (for example, a dask DataFrame, Array, Bag, or Delayed), its associated graph will be included in the output of visualize. By default, python builtin collections are also traversed to look for dask objects (for more information see the ``traverse`` keyword). Arguments lacking an associated graph will be ignored. filename : str or None, optional The name of the file to write to disk. If the provided `filename` doesn't include an extension, '.png' will be used by default. If `filename` is None, no file will be written, and we communicate with dot using only pipes. format : {'png', 'pdf', 'dot', 'svg', 'jpeg', 'jpg'}, optional Format in which to write output file. Default is 'png'. traverse : bool, optional By default, dask traverses builtin python collections looking for dask objects passed to ``visualize``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. optimize_graph : bool, optional If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False. color : {None, 'order', 'ages', 'freed', 'memoryincreases', 'memorydecreases', 'memorypressure'}, optional Options to color nodes. colormap: - None, the default, no colors. - 'order', colors the nodes' border based on the order they appear in the graph. - 'ages', how long the data of a node is held. - 'freed', the number of dependencies released after running a node. - 'memoryincreases', how many more outputs are held after the lifetime of a node. Large values may indicate nodes that should have run later. - 'memorydecreases', how many fewer outputs are held after the lifetime of a node. Large values may indicate nodes that should have run sooner. - 'memorypressure', the number of data held when the node is run (circle), or the data is released (rectangle). maxval : {int, float}, optional Maximum value for colormap to normalize form 0 to 1.0. Default is ``None`` will make it the max number of values collapse_outputs : bool, optional Whether to collapse output boxes, which often have empty labels. Default is False. verbose : bool, optional Whether to label output and input boxes even if the data aren't chunked. Beware: these labels can get very long. Default is False. engine : {"graphviz", "ipycytoscape", "cytoscape"}, optional. The visualization engine to use. If not provided, this checks the dask config value "visualization.engine". If that is not set, it tries to import ``graphviz`` and ``ipycytoscape``, using the first one to succeed. **kwargs Additional keyword arguments to forward to the visualization engine. Examples -------- >>> x.visualize(filename='dask.pdf') # doctest: +SKIP >>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP Returns ------- result : IPython.diplay.Image, IPython.display.SVG, or None See dask.dot.dot_graph for more information. See Also -------- dask.dot.dot_graph Notes ----- For more information on optimization see here: https://docs.dask.org/en/latest/optimize.html """ args, _ = unpack_collections(*args, traverse=traverse) dsk = dict(collections_to_dsk(args, optimize_graph=optimize_graph)) return visualize_dsk( dsk=dsk, filename=filename, traverse=traverse, optimize_graph=optimize_graph, maxval=maxval, engine=engine, **kwargs, )
def visualize_dsk( dsk, filename="mydask", traverse=True, optimize_graph=False, maxval=None, o=None, engine: Literal["cytoscape", "ipycytoscape", "graphviz"] | None = None, limit=None, **kwargs, ): color = kwargs.get("color") from dask.order import diagnostics, order if color in { "order", "order-age", "order-freed", "order-memoryincreases", "order-memorydecreases", "order-memorypressure", "age", "freed", "memoryincreases", "memorydecreases", "memorypressure", "critical", "cpath", }: import matplotlib.pyplot as plt if o is None: o_stats = order(dsk, return_stats=True) o = {k: v.priority for k, v in o_stats.items()} elif isinstance(next(iter(o.values())), int): o_stats = order(dsk, return_stats=True) else: o_stats = o o = {k: v.priority for k, v in o.items()} try: cmap = kwargs.pop("cmap") except KeyError: cmap = plt.cm.plasma if isinstance(cmap, str): import matplotlib.pyplot as plt cmap = getattr(plt.cm, cmap) def label(x): return str(values[x]) data_values = None if color != "order": info = diagnostics(dsk, o)[0] if color.endswith("age"): values = {key: val.age for key, val in info.items()} elif color.endswith("freed"): values = {key: val.num_dependencies_freed for key, val in info.items()} elif color.endswith("memorypressure"): values = {key: val.num_data_when_run for key, val in info.items()} data_values = { key: val.num_data_when_released for key, val in info.items() } elif color.endswith("memoryincreases"): values = { key: max(0, val.num_data_when_released - val.num_data_when_run) for key, val in info.items() } elif color.endswith("memorydecreases"): values = { key: max(0, val.num_data_when_run - val.num_data_when_released) for key, val in info.items() } elif color.split("-")[-1] in {"critical", "cpath"}: values = {key: val.critical_path for key, val in o_stats.items()} else: raise NotImplementedError(color) if color.startswith("order-"): def label(x): return str(o[x]) + "-" + str(values[x]) else: values = o if maxval is None: maxval = max(1, max(values.values())) colors = {k: _colorize(cmap(v / maxval, bytes=True)) for k, v in values.items()} if data_values is None: data_values = values data_colors = colors else: data_colors = { k: _colorize(cmap(v / maxval, bytes=True)) for k, v in data_values.items() } kwargs["function_attributes"] = { k: {"color": v, "label": label(k)} for k, v in colors.items() } kwargs["data_attributes"] = {k: {"color": v} for k, v in data_colors.items()} elif color: raise NotImplementedError("Unknown value color=%s" % color) # Determine which engine to dispatch to, first checking the kwarg, then config, # then whichever of graphviz or ipycytoscape are installed, in that order. engine = engine or config.get("visualization.engine", None) if not engine: try: import graphviz # noqa: F401 engine = "graphviz" except ImportError: try: import ipycytoscape # noqa: F401 engine = "cytoscape" except ImportError: pass if engine == "graphviz": from dask.dot import dot_graph return dot_graph(dsk, filename=filename, **kwargs) elif engine in ("cytoscape", "ipycytoscape"): from dask.dot import cytoscape_graph return cytoscape_graph(dsk, filename=filename, **kwargs) elif engine is None: raise RuntimeError( "No visualization engine detected, please install graphviz or ipycytoscape" ) else: raise ValueError(f"Visualization engine {engine} not recognized")
[docs]def persist(*args, traverse=True, optimize_graph=True, scheduler=None, **kwargs): """Persist multiple Dask collections into memory This turns lazy Dask collections into Dask collections with the same metadata, but now with their results fully computed or actively computing in the background. For example a lazy dask.array built up from many lazy calls will now be a dask.array of the same shape, dtype, chunks, etc., but now with all of those previously lazy tasks either computed in memory as many small :class:`numpy.array` (in the single-machine case) or asynchronously running in the background on a cluster (in the distributed case). This function operates differently if a ``dask.distributed.Client`` exists and is connected to a distributed scheduler. In this case this function will return as soon as the task graph has been submitted to the cluster, but before the computations have completed. Computations will continue asynchronously in the background. When using this function with the single machine scheduler it blocks until the computations have finished. When using Dask on a single machine you should ensure that the dataset fits entirely within memory. Examples -------- >>> df = dd.read_csv('/path/to/*.csv') # doctest: +SKIP >>> df = df[df.name == 'Alice'] # doctest: +SKIP >>> df['in-debt'] = df.balance < 0 # doctest: +SKIP >>> df = df.persist() # triggers computation # doctest: +SKIP >>> df.value().min() # future computations are now fast # doctest: +SKIP -10 >>> df.value().max() # doctest: +SKIP 100 >>> from dask import persist # use persist function on multiple collections >>> a, b = persist(a, b) # doctest: +SKIP Parameters ---------- *args: Dask collections scheduler : string, optional Which scheduler to use like "threads", "synchronous" or "processes". If not provided, the default is to check the global settings first, and then fall back to the collection defaults. traverse : bool, optional By default dask traverses builtin python collections looking for dask objects passed to ``persist``. For large collections this can be expensive. If none of the arguments contain any dask objects, set ``traverse=False`` to avoid doing this traversal. optimize_graph : bool, optional If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging. **kwargs Extra keywords to forward to the scheduler function. Returns ------- New dask collections backed by in-memory data """ collections, repack = unpack_collections(*args, traverse=traverse) if not collections: return args schedule = get_scheduler(scheduler=scheduler, collections=collections) if inspect.ismethod(schedule): try: from distributed.client import default_client except ImportError: pass else: try: client = default_client() except ValueError: pass else: if client.get == schedule: results = client.persist( collections, optimize_graph=optimize_graph, **kwargs ) return repack(results) dsk = collections_to_dsk(collections, optimize_graph, **kwargs) keys, postpersists = [], [] for a in collections: a_keys = list(flatten(a.__dask_keys__())) rebuild, state = a.__dask_postpersist__() keys.extend(a_keys) postpersists.append((rebuild, a_keys, state)) with shorten_traceback(): results = schedule(dsk, keys, **kwargs) d = dict(zip(keys, results)) results2 = [r({k: d[k] for k in ks}, *s) for r, ks, s in postpersists] return repack(results2)
############ # Tokenize # ############ class TokenizationError(RuntimeError): pass def tokenize( *args: object, ensure_deterministic: bool | None = None, **kwargs: object ) -> str: """Deterministic token >>> tokenize([1, 2, '3']) '06961e8de572e73c2e74b51348177918' >>> tokenize('Hello') == tokenize('Hello') True Parameters ---------- args, kwargs: objects to tokenize ensure_deterministic: bool, optional If True, raise TokenizationError if the objects cannot be deterministically tokenized, e.g. two identical objects will return different tokens. Defaults to the `tokenize.ensure-deterministic` configuration parameter. """ with _seen_ctx(reset=True), _ensure_deterministic_ctx(ensure_deterministic): token: object = _normalize_seq_func(args) if kwargs: token = token, _normalize_seq_func(sorted(kwargs.items())) # Pass `usedforsecurity=False` to support FIPS builds of Python return hashlib.md5(str(token).encode(), usedforsecurity=False).hexdigest() # tokenize.ensure-deterministic flag, potentially overridden by tokenize() _ensure_deterministic: ContextVar[bool] = ContextVar("_ensure_deterministic") # Circular reference breaker used by _normalize_seq_func. # This variable is recreated anew every time you call tokenize(). Note that this means # that you could call tokenize() from inside tokenize() and they would be fully # independent. # # It is a map of {id(obj): (<first seen incremental int>, obj)} which causes an object # to be tokenized as ("__seen", <incremental>) the second time it's encountered while # traversing collections. A strong reference to the object is stored in the context to # prevent ids from being reused by different objects. _seen: ContextVar[dict[int, tuple[int, object]]] = ContextVar("_seen") @contextmanager def _ensure_deterministic_ctx(ensure_deterministic: bool | None) -> Iterator[bool]: try: ensure_deterministic = _ensure_deterministic.get() # There's a call of tokenize() higher up in the stack tok = None except LookupError: # Outermost tokenize(), or normalize_token() was called directly if ensure_deterministic is None: ensure_deterministic = config.get("tokenize.ensure-deterministic") tok = _ensure_deterministic.set(ensure_deterministic) try: yield ensure_deterministic finally: if tok: tok.var.reset(tok) def _maybe_raise_nondeterministic(msg: str) -> None: with _ensure_deterministic_ctx(None) as ensure_deterministic: if ensure_deterministic: raise TokenizationError(msg) @contextmanager def _seen_ctx(reset: bool) -> Iterator[dict[int, tuple[int, object]]]: if reset: # It is important to reset the token on tokenize() to avoid artifacts when # it is called recursively seen: dict[int, tuple[int, object]] = {} tok = _seen.set(seen) else: try: seen = _seen.get() tok = None except LookupError: # This is for debug only, for when normalize_token is called outside of # tokenize() seen = {} tok = _seen.set(seen) try: yield seen finally: if tok: tok.var.reset(tok) normalize_token = Dispatch() normalize_token.register( ( int, float, str, bytes, type(None), slice, complex, type(Ellipsis), decimal.Decimal, datetime.date, datetime.time, datetime.datetime, datetime.timedelta, pathlib.PurePath, ), identity, ) @normalize_token.register((types.MappingProxyType, dict)) def normalize_dict(d): return "dict", _normalize_seq_func(sorted(d.items(), key=lambda kv: str(kv[0]))) @normalize_token.register(OrderedDict) def normalize_ordered_dict(d): return _normalize_seq_func((type(d), list(d.items()))) @normalize_token.register(set) def normalize_set(s): # Note: in some Python version / OS combinations, set order changes every # time you recreate the set (even within the same interpreter). # In most other cases, set ordering is consistent within the same interpreter. return "set", _normalize_seq_func(sorted(s, key=str)) def _normalize_seq_func(seq: Iterable[object]) -> list[object]: with _seen_ctx(reset=False) as seen: out = [] for item in seq: if isinstance(item, (str, bytes, int, float, bool, type(None))): # Basic data type. This is just for performance and compactness of the # output. It doesn't need to be a comprehensive list. pass elif id(item) in seen: # May or may not be a circular recursion. Maybe just a double reference. seen_when, _ = seen[id(item)] item = "__seen", seen_when else: seen[id(item)] = len(seen), item item = normalize_token(item) out.append(item) return out @normalize_token.register((tuple, list)) def normalize_seq(seq): return type(seq).__name__, _normalize_seq_func(seq) @normalize_token.register(literal) def normalize_literal(lit): return "literal", normalize_token(lit()) @normalize_token.register(Compose) def normalize_compose(func): return _normalize_seq_func((func.first,) + func.funcs) @normalize_token.register((partial, curry)) def normalize_partial(func): return _normalize_seq_func((func.func, func.args, func.keywords)) @normalize_token.register((types.MethodType, types.MethodWrapperType)) def normalize_bound_method(meth): return normalize_token(meth.__self__), meth.__name__ @normalize_token.register(types.BuiltinFunctionType) def normalize_builtin_function_or_method(func): # Note: BuiltinMethodType is BuiltinFunctionType self = getattr(func, "__self__", None) if self is not None and not inspect.ismodule(self): return normalize_bound_method(func) else: return normalize_object(func) @normalize_token.register(object) def normalize_object(o): method = getattr(o, "__dask_tokenize__", None) if method is not None and not isinstance(o, type): return method() if type(o) is object: return _normalize_pure_object(o) if dataclasses.is_dataclass(o) and not isinstance(o, type): return _normalize_dataclass(o) try: return _normalize_pickle(o) except Exception: _maybe_raise_nondeterministic( f"Object {o!r} cannot be deterministically hashed. See " "https://docs.dask.org/en/latest/custom-collections.html#implementing-deterministic-hashing " "for more information." ) return uuid.uuid4().hex _seen_objects = set() def _normalize_pure_object(o: object) -> tuple[str, int]: _maybe_raise_nondeterministic( "object() cannot be deterministically hashed. See " "https://docs.dask.org/en/latest/custom-collections.html#implementing-deterministic-hashing " "for more information." ) # Idempotent, but not deterministic. Make sure that the id is not reused. _seen_objects.add(o) return "object", id(o) def _normalize_pickle(o: object) -> tuple: buffers: list[pickle.PickleBuffer] = [] pik: bytes | None try: pik = pickle.dumps(o, protocol=5, buffer_callback=buffers.append) if b"__main__" in pik: pik = None except Exception: pik = None if pik is None: buffers.clear() pik = cloudpickle.dumps(o, protocol=5, buffer_callback=buffers.append) return hash_buffer_hex(pik), [hash_buffer_hex(buf) for buf in buffers] def _normalize_dataclass(obj): fields = [ (field.name, normalize_token(getattr(obj, field.name, None))) for field in dataclasses.fields(obj) ] params = obj.__dataclass_params__ params = [(attr, getattr(params, attr)) for attr in params.__slots__] return normalize_object(type(obj)), params, fields @normalize_token.register_lazy("pandas") def register_pandas(): import pandas as pd @normalize_token.register(pd.Index) def normalize_index(ind): values = ind.array return [ind.name, normalize_token(values)] @normalize_token.register(pd.MultiIndex) def normalize_index(ind): codes = ind.codes return ( [ind.name] + [normalize_token(x) for x in ind.levels] + [normalize_token(x) for x in codes] ) @normalize_token.register(pd.Categorical) def normalize_categorical(cat): return [normalize_token(cat.codes), normalize_token(cat.dtype)] @normalize_token.register(pd.arrays.PeriodArray) @normalize_token.register(pd.arrays.DatetimeArray) @normalize_token.register(pd.arrays.TimedeltaArray) def normalize_period_array(arr): return [normalize_token(arr.asi8), normalize_token(arr.dtype)] @normalize_token.register(pd.arrays.IntervalArray) def normalize_interval_array(arr): return [ normalize_token(arr.left), normalize_token(arr.right), normalize_token(arr.closed), ] @normalize_token.register(pd.Series) def normalize_series(s): return [ s.name, s.dtype, normalize_token(s._values), normalize_token(s.index), ] @normalize_token.register(pd.DataFrame) def normalize_dataframe(df): mgr = df._mgr data = list(mgr.arrays) + [df.columns, df.index] return list(map(normalize_token, data)) @normalize_token.register(pd.api.extensions.ExtensionArray) def normalize_extension_array(arr): import numpy as np return normalize_token(np.asarray(arr)) # Dtypes @normalize_token.register(pd.api.types.CategoricalDtype) def normalize_categorical_dtype(dtype): return [normalize_token(dtype.categories), normalize_token(dtype.ordered)] @normalize_token.register(pd.api.extensions.ExtensionDtype) def normalize_period_dtype(dtype): return normalize_token(dtype.name) @normalize_token.register(type(pd.NA)) def normalize_na(na): return pd.NA @normalize_token.register(pd.offsets.BaseOffset) def normalize_offset(offset): return offset.freqstr @normalize_token.register_lazy("pyarrow") def register_pyarrow(): import pyarrow as pa @normalize_token.register(pa.DataType) def normalize_datatype(dt): return pickle.dumps(dt, protocol=4) @normalize_token.register_lazy("numpy") def register_numpy(): import numpy as np @normalize_token.register(np.ufunc) def normalize_ufunc(func): try: return _normalize_pickle(func) except Exception: _maybe_raise_nondeterministic( f"Cannot tokenize numpy ufunc {func!r}. Please use functions " "of the dask.array.ufunc module instead. See also " "https://docs.dask.org/en/latest/array-numpy-compatibility.html" ) return uuid.uuid4().hex def _colorize(t): """Convert (r, g, b) triple to "#RRGGBB" string For use with ``visualize(color=...)`` Examples -------- >>> _colorize((255, 255, 255)) '#FFFFFF' >>> _colorize((0, 32, 128)) '#002080' """ t = t[:3] i = sum(v * 256 ** (len(t) - i - 1) for i, v in enumerate(t)) h = hex(int(i))[2:].upper() h = "0" * (6 - len(h)) + h return "#" + h named_schedulers: dict[str, SchedulerGetCallable] = { "sync": local.get_sync, "synchronous": local.get_sync, "single-threaded": local.get_sync, } if not EMSCRIPTEN: from dask import threaded named_schedulers.update( { "threads": threaded.get, "threading": threaded.get, } ) from dask import multiprocessing as dask_multiprocessing named_schedulers.update( { "processes": dask_multiprocessing.get, "multiprocessing": dask_multiprocessing.get, } ) get_err_msg = """ The get= keyword has been removed. Please use the scheduler= keyword instead with the name of the desired scheduler like 'threads' or 'processes' x.compute(scheduler='single-threaded') x.compute(scheduler='threads') x.compute(scheduler='processes') or with a function that takes the graph and keys x.compute(scheduler=my_scheduler_function) or with a Dask client x.compute(scheduler=client) """.strip() def get_scheduler(get=None, scheduler=None, collections=None, cls=None): """Get scheduler function There are various ways to specify the scheduler to use: 1. Passing in scheduler= parameters 2. Passing these into global configuration 3. Using a dask.distributed default Client 4. Using defaults of a dask collection This function centralizes the logic to determine the right scheduler to use from those many options """ if get: raise TypeError(get_err_msg) if scheduler is not None: if callable(scheduler): return scheduler elif "Client" in type(scheduler).__name__ and hasattr(scheduler, "get"): return scheduler.get elif isinstance(scheduler, str): scheduler = scheduler.lower() client_available = False if _distributed_available(): assert _DistributedClient is not None with suppress(ValueError): _DistributedClient.current(allow_global=True) client_available = True if scheduler in named_schedulers: if client_available: warnings.warn( "Running on a single-machine scheduler when a distributed client " "is active might lead to unexpected results." ) return named_schedulers[scheduler] elif scheduler in ("dask.distributed", "distributed"): if not client_available: raise RuntimeError( f"Requested {scheduler} scheduler but no Client active." ) assert _get_distributed_client is not None return _get_distributed_client().get else: raise ValueError( "Expected one of [distributed, %s]" % ", ".join(sorted(named_schedulers)) ) elif isinstance(scheduler, Executor): # Get `num_workers` from `Executor`'s `_max_workers` attribute. # If undefined, fallback to `config` or worst case CPU_COUNT. num_workers = getattr(scheduler, "_max_workers", None) if num_workers is None: num_workers = config.get("num_workers", CPU_COUNT) assert isinstance(num_workers, Integral) and num_workers > 0 return partial(local.get_async, scheduler.submit, num_workers) else: raise ValueError("Unexpected scheduler: %s" % repr(scheduler)) # else: # try to connect to remote scheduler with this name # return get_client(scheduler).get if config.get("scheduler", None): return get_scheduler(scheduler=config.get("scheduler", None)) if config.get("get", None): raise ValueError(get_err_msg) try: from distributed import get_client return get_client().get except (ImportError, ValueError): pass if cls is not None: return cls.__dask_scheduler__ if collections: collections = [c for c in collections if c is not None] if collections: get = collections[0].__dask_scheduler__ if not all(c.__dask_scheduler__ == get for c in collections): raise ValueError( "Compute called on multiple collections with " "differing default schedulers. Please specify a " "scheduler=` parameter explicitly in compute or " "globally with `dask.config.set`." ) return get return None def wait(x, timeout=None, return_when="ALL_COMPLETED"): """Wait until computation has finished This is a compatibility alias for ``dask.distributed.wait``. If it is applied onto Dask collections without Dask Futures or if Dask distributed is not installed then it is a no-op """ try: from distributed import wait return wait(x, timeout=timeout, return_when=return_when) except (ImportError, ValueError): return x def get_collection_names(collection) -> set[str]: """Infer the collection names from the dask keys, under the assumption that all keys are either tuples with matching first element, and that element is a string, or there is exactly one key and it is a string. Examples -------- >>> a.__dask_keys__() # doctest: +SKIP ["foo", "bar"] >>> get_collection_names(a) # doctest: +SKIP {"foo", "bar"} >>> b.__dask_keys__() # doctest: +SKIP [[("foo-123", 0, 0), ("foo-123", 0, 1)], [("foo-123", 1, 0), ("foo-123", 1, 1)]] >>> get_collection_names(b) # doctest: +SKIP {"foo-123"} """ if not is_dask_collection(collection): raise TypeError(f"Expected Dask collection; got {type(collection)}") return {get_name_from_key(k) for k in flatten(collection.__dask_keys__())} def get_name_from_key(key: Key) -> str: """Given a dask collection's key, extract the collection name. Parameters ---------- key: string or tuple Dask collection's key, which must be either a single string or a tuple whose first element is a string (commonly referred to as a collection's 'name'), Examples -------- >>> get_name_from_key("foo") 'foo' >>> get_name_from_key(("foo-123", 1, 2)) 'foo-123' """ if isinstance(key, tuple) and key and isinstance(key[0], str): return key[0] if isinstance(key, str): return key raise TypeError(f"Expected str or a tuple starting with str; got {key!r}") KeyOrStrT = TypeVar("KeyOrStrT", Key, str) def replace_name_in_key(key: KeyOrStrT, rename: Mapping[str, str]) -> KeyOrStrT: """Given a dask collection's key, replace the collection name with a new one. Parameters ---------- key: string or tuple Dask collection's key, which must be either a single string or a tuple whose first element is a string (commonly referred to as a collection's 'name'), rename: Mapping of zero or more names from : to. Extraneous names will be ignored. Names not found in this mapping won't be replaced. Examples -------- >>> replace_name_in_key("foo", {}) 'foo' >>> replace_name_in_key("foo", {"foo": "bar"}) 'bar' >>> replace_name_in_key(("foo-123", 1, 2), {"foo-123": "bar-456"}) ('bar-456', 1, 2) """ if isinstance(key, tuple) and key and isinstance(key[0], str): return (rename.get(key[0], key[0]),) + key[1:] if isinstance(key, str): return rename.get(key, key) raise TypeError(f"Expected str or a tuple starting with str; got {key!r}") def clone_key(key: KeyOrStrT, seed: Hashable) -> KeyOrStrT: """Clone a key from a Dask collection, producing a new key with the same prefix and indices and a token which is a deterministic function of the previous key and seed. Examples -------- >>> clone_key("x", 123) 'x-c4fb64ccca807af85082413d7ef01721' >>> clone_key("inc-cbb1eca3bafafbb3e8b2419c4eebb387", 123) 'inc-bc629c23014a4472e18b575fdaf29ee7' >>> clone_key(("sum-cbb1eca3bafafbb3e8b2419c4eebb387", 4, 3), 123) ('sum-c053f3774e09bd0f7de6044dbc40e71d', 4, 3) """ if isinstance(key, tuple) and key and isinstance(key[0], str): return (clone_key(key[0], seed),) + key[1:] if isinstance(key, str): prefix = key_split(key) return prefix + "-" + tokenize(key, seed) raise TypeError(f"Expected str or a tuple starting with str; got {key!r}")