dask.array.log2

dask.array.log2

dask.array.log2(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'log2'>

This docstring was copied from numpy.log2.

Some inconsistencies with the Dask version may exist.

Base-2 logarithm of x.

Parameters
xarray_like

Input values.

outndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

wherearray_like, optional

This condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None, locations within it where the condition is False will remain uninitialized.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns
yndarray

Base-2 logarithm of x. This is a scalar if x is a scalar.

See also

log, log10, log1p, emath.log2

Notes

New in version 1.3.0.

Logarithm is a multivalued function: for each x there is an infinite number of z such that 2**z = x. The convention is to return the z whose imaginary part lies in (-pi, pi].

For real-valued input data types, log2 always returns real output. For each value that cannot be expressed as a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log2 is a complex analytical function that has a branch cut [-inf, 0] and is continuous from above on it. log2 handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard.

In the cases where the input has a negative real part and a very small negative complex part (approaching 0), the result is so close to -pi that it evaluates to exactly -pi.

Examples

>>> import numpy as np  
>>> x = np.array([0, 1, 2, 2**4])  
>>> np.log2(x)  
array([-inf,   0.,   1.,   4.])
>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j])  
>>> np.log2(xi)  
array([ 0.+2.26618007j,  0.+0.j        ,  1.+0.j        ,  2.+2.26618007j])