dask.array.ma.nonzero

dask.array.ma.nonzero

dask.array.ma.nonzero(self)[source]

This docstring was copied from numpy.ma.core.nonzero.

Some inconsistencies with the Dask version may exist.

Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that dimension. The corresponding non-zero values can be obtained with:

a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters
None
Returns
tuple_of_arraystuple

Indices of elements that are non-zero.

See also

numpy.nonzero

Function operating on ndarrays.

flatnonzero

Return indices that are non-zero in the flattened version of the input array.

numpy.ndarray.nonzero

Equivalent ndarray method.

count_nonzero

Counts the number of non-zero elements in the input array.

Examples

>>> import numpy as np  
>>> import numpy.ma as ma  
>>> x = ma.array(np.eye(3))  
>>> x  
masked_array(
  data=[[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 1.]],
  mask=False,
  fill_value=1e+20)
>>> x.nonzero()  
(array([0, 1, 2]), array([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked  
>>> x  
masked_array(
  data=[[1.0, 0.0, 0.0],
        [0.0, --, 0.0],
        [0.0, 0.0, 1.0]],
  mask=[[False, False, False],
        [False,  True, False],
        [False, False, False]],
  fill_value=1e+20)
>>> x.nonzero()  
(array([0, 2]), array([0, 2]))

Indices can also be grouped by element.

>>> np.transpose(x.nonzero())  
array([[0, 0],
       [2, 2]])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the a where the condition is true.

>>> a = ma.array([[1,2,3],[4,5,6],[7,8,9]])  
>>> a > 3  
masked_array(
  data=[[False, False, False],
        [ True,  True,  True],
        [ True,  True,  True]],
  mask=False,
  fill_value=True)
>>> ma.nonzero(a > 3)  
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero()  
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))