dask.dataframe.read_sql_table
dask.dataframe.read_sql_table¶
- dask.dataframe.read_sql_table(table_name, con, index_col, divisions=None, npartitions=None, limits=None, columns=None, bytes_per_chunk='256 MiB', head_rows=5, schema=None, meta=None, engine_kwargs=None, **kwargs)[source]¶
Read SQL database table into a DataFrame.
If neither
divisions
ornpartitions
is given, the memory footprint of the first few rows will be determined, and partitions of size ~256MB will be used.- Parameters
- table_namestr
Name of SQL table in database.
- constr
Full sqlalchemy URI for the database connection
- index_colstr
Column which becomes the index, and defines the partitioning. Should be a indexed column in the SQL server, and any orderable type. If the type is number or time, then partition boundaries can be inferred from
npartitions
orbytes_per_chunk
; otherwise must supply explicitdivisions
.- columnssequence of str or SqlAlchemy column or None
Which columns to select; if None, gets all. Note can be a mix of str and SqlAlchemy columns
- schemastr or None
Pass this to sqlalchemy to select which DB schema to use within the URI connection
- divisions: sequence
Values of the index column to split the table by. If given, this will override
npartitions
andbytes_per_chunk
. The divisions are the value boundaries of the index column used to define the partitions. For example,divisions=list('acegikmoqsuwz')
could be used to partition a string column lexographically into 12 partitions, with the implicit assumption that each partition contains similar numbers of records.- npartitionsint
Number of partitions, if
divisions
is not given. Will split the values of the index column linearly betweenlimits
, if given, or the column max/min. The index column must be numeric or time for this to work- limits: 2-tuple or None
Manually give upper and lower range of values for use with
npartitions
; if None, first fetches max/min from the DB. Upper limit, if given, is inclusive.- bytes_per_chunkstr or int
If both
divisions
andnpartitions
is None, this is the target size of each partition, in bytes- head_rowsint
How many rows to load for inferring the data-types, and memory per row
- metaempty DataFrame or None
If provided, do not attempt to infer dtypes, but use these, coercing all chunks on load
- engine_kwargsdict or None
Specific db engine parameters for sqlalchemy
- kwargsdict
Additional parameters to pass to pd.read_sql()
- Returns
- dask.dataframe
See also
read_sql_query
Read SQL query into a DataFrame.
Examples
>>> df = dd.read_sql_table('accounts', 'sqlite:///path/to/bank.db', ... npartitions=10, index_col='id')