dask.array.random.choice

dask.array.random.choice(a, size=None, replace=True, p=None, chunks='auto')

Generates a random sample from a given 1-D array

This docstring was copied from numpy.random.mtrand.RandomState.choice.

Some inconsistencies with the Dask version may exist.

New in version 1.7.0.

Note

New code should use the choice method of a default_rng() instance instead; please see the Quick Start.

Parameters
a1-D array-like or int

If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if it were np.arange(a)

sizeint or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. Default is None, in which case a single value is returned.

replaceboolean, optional

Whether the sample is with or without replacement. Default is True, meaning that a value of a can be selected multiple times.

p1-D array-like, optional

The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in a.

Returns
samplessingle item or ndarray

The generated random samples

Raises
ValueError

If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size

See also

randint, shuffle, permutation
Generator.choice

which should be used in new code

Notes

Setting user-specified probabilities through p uses a more general but less efficient sampler than the default. The general sampler produces a different sample than the optimized sampler even if each element of p is 1 / len(a).

Sampling random rows from a 2-D array is not possible with this function, but is possible with Generator.choice through its axis keyword.

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)  
array([0, 3, 4]) # random
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])  
array([3, 3, 0]) # random

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False)  
array([3,1,0]) # random
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])  
array([2, 3, 0]) # random

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']  
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])  
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
      dtype='<U11')