API

Dataframe

DataFrame(dsk, name, meta, divisions) Parallel Pandas DataFrame
DataFrame.add(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary operator add).
DataFrame.append(other[, interleave_partitions]) Append rows of other to the end of this frame, returning a new object.
DataFrame.apply(func[, axis, broadcast, …]) Parallel version of pandas.DataFrame.apply
DataFrame.assign(**kwargs) Assign new columns to a DataFrame, returning a new object (a copy) with the new columns added to the original ones.
DataFrame.astype(dtype) Cast a pandas object to a specified dtype dtype.
DataFrame.categorize([columns, index, …]) Convert columns of the DataFrame to category dtype.
DataFrame.columns
DataFrame.compute(**kwargs) Compute this dask collection
DataFrame.corr([method, min_periods, …]) Compute pairwise correlation of columns, excluding NA/null values
DataFrame.count([axis, split_every]) Count non-NA cells for each column or row.
DataFrame.cov([min_periods, split_every]) Compute pairwise covariance of columns, excluding NA/null values.
DataFrame.cummax([axis, skipna, out]) Return cumulative maximum over a DataFrame or Series axis.
DataFrame.cummin([axis, skipna, out]) Return cumulative minimum over a DataFrame or Series axis.
DataFrame.cumprod([axis, skipna, dtype, out]) Return cumulative product over a DataFrame or Series axis.
DataFrame.cumsum([axis, skipna, dtype, out]) Return cumulative sum over a DataFrame or Series axis.
DataFrame.describe([split_every, …]) Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.
DataFrame.div(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator truediv).
DataFrame.drop(labels[, axis, errors]) Drop specified labels from rows or columns.
DataFrame.drop_duplicates([split_every, …]) Return DataFrame with duplicate rows removed, optionally only considering certain columns
DataFrame.dropna([how, subset, thresh]) Remove missing values.
DataFrame.dtypes Return data types
DataFrame.fillna([value, method, limit, axis]) Fill NA/NaN values using the specified method
DataFrame.floordiv(other[, axis, level, …]) Integer division of dataframe and other, element-wise (binary operator floordiv).
DataFrame.get_partition(n) Get a dask DataFrame/Series representing the nth partition.
DataFrame.groupby([by]) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
DataFrame.head([n, npartitions, compute]) First n rows of the dataset
DataFrame.iloc Purely integer-location based indexing for selection by position.
DataFrame.index Return dask Index instance
DataFrame.isna() Detect missing values.
DataFrame.isnull() Detect missing values.
DataFrame.iterrows() Iterate over DataFrame rows as (index, Series) pairs.
DataFrame.itertuples([index, name]) Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.
DataFrame.join(other[, on, how, lsuffix, …]) Join columns with other DataFrame either on index or on a key column.
DataFrame.known_divisions Whether divisions are already known
DataFrame.loc Purely label-location based indexer for selection by label.
DataFrame.map_partitions(func, *args, **kwargs) Apply Python function on each DataFrame partition.
DataFrame.mask(cond[, other]) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.
DataFrame.max([axis, skipna, split_every, out]) This docstring was copied from pandas.core.frame.DataFrame.max.
DataFrame.mean([axis, skipna, split_every, …]) This docstring was copied from pandas.core.frame.DataFrame.mean.
DataFrame.merge(right[, how, on, left_on, …]) Merge the DataFrame with another DataFrame
DataFrame.min([axis, skipna, split_every, out]) This docstring was copied from pandas.core.frame.DataFrame.min.
DataFrame.mod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary operator mod).
DataFrame.mul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (binary operator mul).
DataFrame.ndim Return dimensionality
DataFrame.nlargest([n, columns, split_every]) Return the first n rows ordered by columns in descending order.
DataFrame.npartitions Return number of partitions
DataFrame.partitions Slice dataframe by partitions
DataFrame.pow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-wise (binary operator pow).
DataFrame.prod([axis, skipna, split_every, …]) This docstring was copied from pandas.core.frame.DataFrame.prod.
DataFrame.quantile([q, axis, method]) Approximate row-wise and precise column-wise quantiles of DataFrame
DataFrame.query(expr, **kwargs) Filter dataframe with complex expression
DataFrame.radd(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary operator radd).
DataFrame.random_split(frac[, random_state]) Pseudorandomly split dataframe into different pieces row-wise
DataFrame.rdiv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator rtruediv).
DataFrame.rename([index, columns]) Alter axes labels.
DataFrame.repartition([divisions, …]) Repartition dataframe along new divisions
DataFrame.replace([to_replace, value, regex]) Replace values given in to_replace with value.
DataFrame.reset_index([drop]) Reset the index to the default index.
DataFrame.rfloordiv(other[, axis, level, …]) Integer division of dataframe and other, element-wise (binary operator rfloordiv).
DataFrame.rmod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary operator rmod).
DataFrame.rmul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (binary operator rmul).
DataFrame.rpow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-wise (binary operator rpow).
DataFrame.rsub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (binary operator rsub).
DataFrame.rtruediv(other[, axis, level, …]) Floating division of dataframe and other, element-wise (binary operator rtruediv).
DataFrame.sample([n, frac, replace, …]) Random sample of items
DataFrame.set_index(other[, drop, sorted, …]) Set the DataFrame index (row labels) using an existing column
DataFrame.shape Return a tuple representing the dimensionality of the DataFrame.
DataFrame.std([axis, skipna, ddof, …]) This docstring was copied from pandas.core.frame.DataFrame.std.
DataFrame.sub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (binary operator sub).
DataFrame.sum([axis, skipna, split_every, …]) This docstring was copied from pandas.core.frame.DataFrame.sum.
DataFrame.tail([n, compute]) Last n rows of the dataset
DataFrame.to_bag([index]) Create Dask Bag from a Dask DataFrame
DataFrame.to_csv(filename, **kwargs) Store Dask DataFrame to CSV files
DataFrame.to_dask_array([lengths]) Convert a dask DataFrame to a dask array.
DataFrame.to_delayed([optimize_graph]) Convert into a list of dask.delayed objects, one per partition.
DataFrame.to_hdf(path_or_buf, key[, mode, …]) Store Dask Dataframe to Hierarchical Data Format (HDF) files
DataFrame.to_json(filename, *args, **kwargs) See dd.to_json docstring for more information
DataFrame.to_parquet(path, *args, **kwargs) Store Dask.dataframe to Parquet files
DataFrame.to_records([index]) Create Dask Array from a Dask Dataframe
DataFrame.truediv(other[, axis, level, …]) Floating division of dataframe and other, element-wise (binary operator truediv).
DataFrame.values Return a dask.array of the values of this dataframe
DataFrame.var([axis, skipna, ddof, …]) This docstring was copied from pandas.core.frame.DataFrame.var.
DataFrame.visualize([filename, format, …]) Render the computation of this object’s task graph using graphviz.
DataFrame.where(cond[, other]) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Series

Series(dsk, name, meta, divisions) Parallel Pandas Series
Series.add(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary operator add).
Series.align(other[, join, axis, fill_value]) Align two objects on their axes with the specified join method for each axis Index
Series.all([axis, skipna, split_every, out]) Return whether all elements are True, potentially over an axis.
Series.any([axis, skipna, split_every, out]) Return whether any element is True over requested axis.
Series.append(other[, interleave_partitions]) Concatenate two or more Series.
Series.apply(func[, convert_dtype, meta, args]) Parallel version of pandas.Series.apply
Series.astype(dtype) Cast a pandas object to a specified dtype dtype.
Series.autocorr([lag, split_every]) Lag-N autocorrelation
Series.between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <= right.
Series.bfill([axis, limit]) Synonym for DataFrame.fillna(method='bfill')
Series.cat
Series.clear_divisions() Forget division information
Series.clip([lower, upper, out]) Trim values at input threshold(s).
Series.clip_lower(threshold) Return copy of the input with values below a threshold truncated.
Series.clip_upper(threshold) Return copy of input with values above given value(s) truncated.
Series.compute(**kwargs) Compute this dask collection
Series.copy() Make a copy of the dataframe
Series.corr(other[, method, min_periods, …]) Compute correlation with other Series, excluding missing values
Series.count([split_every]) Return number of non-NA/null observations in the Series
Series.cov(other[, min_periods, split_every]) Compute covariance with Series, excluding missing values
Series.cummax([axis, skipna, out]) Return cumulative maximum over a DataFrame or Series axis.
Series.cummin([axis, skipna, out]) Return cumulative minimum over a DataFrame or Series axis.
Series.cumprod([axis, skipna, dtype, out]) Return cumulative product over a DataFrame or Series axis.
Series.cumsum([axis, skipna, dtype, out]) Return cumulative sum over a DataFrame or Series axis.
Series.describe([split_every, percentiles, …]) Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.
Series.diff([periods, axis]) First discrete difference of element.
Series.div(other[, level, fill_value, axis]) Floating division of series and other, element-wise (binary operator truediv).
Series.drop_duplicates([split_every, split_out]) Return DataFrame with duplicate rows removed, optionally only considering certain columns
Series.dropna() Return a new Series with missing values removed.
Series.dt Namespace of datetime methods
Series.dtype Return data type
Series.eq(other[, level, fill_value, axis]) Equal to of series and other, element-wise (binary operator eq).
Series.ffill([axis, limit]) Synonym for DataFrame.fillna(method='ffill')
Series.fillna([value, method, limit, axis]) Fill NA/NaN values using the specified method
Series.first(offset) Convenience method for subsetting initial periods of time series data based on a date offset.
Series.floordiv(other[, level, fill_value, axis]) Integer division of series and other, element-wise (binary operator floordiv).
Series.ge(other[, level, fill_value, axis]) Greater than or equal to of series and other, element-wise (binary operator ge).
Series.get_partition(n) Get a dask DataFrame/Series representing the nth partition.
Series.groupby([by]) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
Series.gt(other[, level, fill_value, axis]) Greater than of series and other, element-wise (binary operator gt).
Series.head([n, npartitions, compute]) First n rows of the dataset
Series.idxmax([axis, skipna, split_every]) Return index of first occurrence of maximum over requested axis.
Series.idxmin([axis, skipna, split_every]) Return index of first occurrence of minimum over requested axis.
Series.isin(values) Check whether values are contained in Series.
Series.isna() Detect missing values.
Series.isnull() Detect missing values.
Series.iteritems() Lazily iterate over (index, value) tuples
Series.known_divisions Whether divisions are already known
Series.last(offset) Convenience method for subsetting final periods of time series data based on a date offset.
Series.le(other[, level, fill_value, axis]) Less than or equal to of series and other, element-wise (binary operator le).
Series.loc Purely label-location based indexer for selection by label.
Series.lt(other[, level, fill_value, axis]) Less than of series and other, element-wise (binary operator lt).
Series.map(arg[, na_action, meta]) Map values of Series using input correspondence (a dict, Series, or function).
Series.map_overlap(func, before, after, …) Apply a function to each partition, sharing rows with adjacent partitions.
Series.map_partitions(func, *args, **kwargs) Apply Python function on each DataFrame partition.
Series.mask(cond[, other]) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.
Series.max([axis, skipna, split_every, out]) This docstring was copied from pandas.core.frame.DataFrame.max.
Series.mean([axis, skipna, split_every, …]) This docstring was copied from pandas.core.frame.DataFrame.mean.
Series.memory_usage([index, deep]) Return the memory usage of the Series.
Series.min([axis, skipna, split_every, out]) This docstring was copied from pandas.core.frame.DataFrame.min.
Series.mod(other[, level, fill_value, axis]) Modulo of series and other, element-wise (binary operator mod).
Series.mul(other[, level, fill_value, axis]) Multiplication of series and other, element-wise (binary operator mul).
Series.nbytes Number of bytes
Series.ndim Return dimensionality
Series.ne(other[, level, fill_value, axis]) Not equal to of series and other, element-wise (binary operator ne).
Series.nlargest([n, split_every]) Return the largest n elements.
Series.notnull() Detect existing (non-missing) values.
Series.nsmallest([n, split_every]) Return the smallest n elements.
Series.nunique([split_every]) Return number of unique elements in the object.
Series.nunique_approx([split_every]) Approximate number of unique rows.
Series.persist(**kwargs) Persist this dask collection into memory
Series.pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs)
Series.pow(other[, level, fill_value, axis]) Exponential power of series and other, element-wise (binary operator pow).
Series.prod([axis, skipna, split_every, …]) This docstring was copied from pandas.core.frame.DataFrame.prod.
Series.quantile([q, method]) Approximate quantiles of Series
Series.radd(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary operator radd).
Series.random_split(frac[, random_state]) Pseudorandomly split dataframe into different pieces row-wise
Series.rdiv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (binary operator rtruediv).
Series.reduction(chunk[, aggregate, …]) Generic row-wise reductions.
Series.repartition([divisions, npartitions, …]) Repartition dataframe along new divisions
Series.replace([to_replace, value, regex]) Replace values given in to_replace with value.
Series.rename([index, inplace, sorted_index]) Alter Series index labels or name
Series.resample(rule[, closed, label]) Convenience method for frequency conversion and resampling of time series.
Series.reset_index([drop]) Reset the index to the default index.
Series.rolling(window[, min_periods, freq, …]) Provides rolling transformations.
Series.round([decimals]) Round each value in a Series to the given number of decimals.
Series.sample([n, frac, replace, random_state]) Random sample of items
Series.sem([axis, skipna, ddof, split_every]) This docstring was copied from pandas.core.frame.DataFrame.sem.
Series.shape Return a tuple representing the dimensionality of a Series.
Series.shift([periods, freq, axis]) Shift index by desired number of periods with an optional time freq
Series.size Size of the Series or DataFrame as a Delayed object.
Series.std([axis, skipna, ddof, …]) This docstring was copied from pandas.core.frame.DataFrame.std.
Series.str Namespace for string methods
Series.sub(other[, level, fill_value, axis]) Subtraction of series and other, element-wise (binary operator sub).
Series.sum([axis, skipna, split_every, …]) This docstring was copied from pandas.core.frame.DataFrame.sum.
Series.to_bag([index]) Create a Dask Bag from a Series
Series.to_csv(filename, **kwargs) Store Dask DataFrame to CSV files
Series.to_dask_array([lengths]) Convert a dask DataFrame to a dask array.
Series.to_delayed([optimize_graph]) Convert into a list of dask.delayed objects, one per partition.
Series.to_frame([name]) Convert Series to DataFrame
Series.to_hdf(path_or_buf, key[, mode, append]) Store Dask Dataframe to Hierarchical Data Format (HDF) files
Series.to_string([max_rows]) Render a string representation of the Series
Series.to_timestamp([freq, how, axis]) Cast to DatetimeIndex of timestamps, at beginning of period
Series.truediv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (binary operator truediv).
Series.unique([split_every, split_out]) Return Series of unique values in the object.
Series.value_counts([split_every, split_out]) Returns object containing counts of unique values.
Series.values Return a dask.array of the values of this dataframe
Series.var([axis, skipna, ddof, …]) This docstring was copied from pandas.core.frame.DataFrame.var.
Series.visualize([filename, format, …]) Render the computation of this object’s task graph using graphviz.
Series.where(cond[, other]) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Groupby Operations

DataFrameGroupBy.aggregate(arg[, …]) Aggregate using one or more operations over the specified axis.
DataFrameGroupBy.apply(func, *args, **kwargs) Parallel version of pandas GroupBy.apply
DataFrameGroupBy.count([split_every, split_out]) Compute count of group, excluding missing values
DataFrameGroupBy.cumcount([axis]) Number each item in each group from 0 to the length of that group - 1.
DataFrameGroupBy.cumprod([axis]) Cumulative product for each group
DataFrameGroupBy.cumsum([axis]) Cumulative sum for each group
DataFrameGroupBy.get_group(key) Constructs NDFrame from group with provided name
DataFrameGroupBy.max([split_every, split_out]) Compute max of group values
DataFrameGroupBy.mean([split_every, split_out]) Compute mean of groups, excluding missing values
DataFrameGroupBy.min([split_every, split_out]) Compute min of group values
DataFrameGroupBy.size([split_every, split_out]) Compute group sizes
DataFrameGroupBy.std([ddof, split_every, …]) Compute standard deviation of groups, excluding missing values
DataFrameGroupBy.sum([split_every, …]) Compute sum of group values
DataFrameGroupBy.var([ddof, split_every, …]) Compute variance of groups, excluding missing values
DataFrameGroupBy.first([split_every, split_out]) Compute first of group values
DataFrameGroupBy.last([split_every, split_out]) Compute last of group values
SeriesGroupBy.aggregate(arg[, split_every, …]) Aggregate using one or more operations over the specified axis.
SeriesGroupBy.apply(func, *args, **kwargs) Parallel version of pandas GroupBy.apply
SeriesGroupBy.count([split_every, split_out]) Compute count of group, excluding missing values
SeriesGroupBy.cumcount([axis]) Number each item in each group from 0 to the length of that group - 1.
SeriesGroupBy.cumprod([axis]) Cumulative product for each group
SeriesGroupBy.cumsum([axis]) Cumulative sum for each group
SeriesGroupBy.get_group(key) Constructs NDFrame from group with provided name
SeriesGroupBy.max([split_every, split_out]) Compute max of group values
SeriesGroupBy.mean([split_every, split_out]) Compute mean of groups, excluding missing values
SeriesGroupBy.min([split_every, split_out]) Compute min of group values
SeriesGroupBy.nunique([split_every, split_out])
SeriesGroupBy.size([split_every, split_out]) Compute group sizes
SeriesGroupBy.std([ddof, split_every, split_out]) Compute standard deviation of groups, excluding missing values
SeriesGroupBy.sum([split_every, split_out, …]) Compute sum of group values
SeriesGroupBy.var([ddof, split_every, split_out]) Compute variance of groups, excluding missing values
SeriesGroupBy.first([split_every, split_out]) Compute first of group values
SeriesGroupBy.last([split_every, split_out]) Compute last of group values
Aggregation(name, chunk, agg[, finalize]) User defined groupby-aggregation.

Rolling Operations

rolling.map_overlap(func, df, before, after, …) Apply a function to each partition, sharing rows with adjacent partitions.
Series.rolling(window[, min_periods, freq, …]) Provides rolling transformations.
DataFrame.rolling(window[, min_periods, …]) Provides rolling transformations.
Rolling.apply(func[, args, kwargs]) rolling function apply
Rolling.count() The rolling count of any non-NaN observations inside the window.
Rolling.kurt() Calculate unbiased rolling kurtosis.
Rolling.max() rolling maximum
Rolling.mean() Calculate the rolling mean of the values.
Rolling.median() Calculate the rolling median.
Rolling.min() Calculate the rolling minimum.
Rolling.quantile(quantile) rolling quantile.
Rolling.skew() Unbiased rolling skewness
Rolling.std([ddof]) Calculate rolling standard deviation.
Rolling.sum() Calculate rolling sum of given DataFrame or Series.
Rolling.var([ddof]) Calculate unbiased rolling variance.

Create DataFrames

read_csv(urlpath[, blocksize, collection, …]) Read CSV files into a Dask.DataFrame
read_table(urlpath[, blocksize, collection, …]) Read delimited files into a Dask.DataFrame
read_fwf(urlpath[, blocksize, collection, …]) Read fixed-width files into a Dask.DataFrame
read_parquet(path[, columns, filters, …]) Read ParquetFile into a Dask DataFrame
read_hdf(pattern, key[, start, stop, …]) Read HDF files into a Dask DataFrame
read_json(url_path[, orient, lines, …]) Create a dataframe from a set of JSON files
read_orc(path[, columns, storage_options]) Read dataframe from ORC file(s)
read_sql_table(table, uri, index_col[, …]) Create dataframe from an SQL table.
from_array(x[, chunksize, columns]) Read any slicable array into a Dask Dataframe
from_bcolz(x[, chunksize, categorize, …]) Read BColz CTable into a Dask Dataframe
from_dask_array(x[, columns, index]) Create a Dask DataFrame from a Dask Array.
from_delayed(dfs[, meta, divisions, prefix]) Create Dask DataFrame from many Dask Delayed objects
from_pandas(data[, npartitions, chunksize, …]) Construct a Dask DataFrame from a Pandas DataFrame
dask.bag.core.Bag.to_dataframe([meta, columns]) Create Dask Dataframe from a Dask Bag.

Store DataFrames

to_csv(df, filename[, name_function, …]) Store Dask DataFrame to CSV files
to_parquet(df, path[, engine, compression, …]) Store Dask.dataframe to Parquet files
to_hdf(df, path, key[, mode, append, …]) Store Dask Dataframe to Hierarchical Data Format (HDF) files
to_records(df) Create Dask Array from a Dask Dataframe
to_bag(df[, index]) Create Dask Bag from a Dask DataFrame
to_json(df, url_path[, orient, lines, …]) Write dataframe into JSON text files

Covert DataFrames

to_dask_array
to_delayed

DataFrame Methods

class dask.dataframe.DataFrame(dsk, name, meta, divisions)

Parallel Pandas DataFrame

Do not use this class directly. Instead use functions like dd.read_csv, dd.read_parquet, or dd.from_pandas.

Parameters:
dsk: dict

The dask graph to compute this DataFrame

name: str

The key prefix that specifies which keys in the dask comprise this particular DataFrame

meta: pandas.DataFrame

An empty pandas.DataFrame with names, dtypes, and index matching the expected output.

divisions: tuple of index values

Values along which we partition our blocks on the index

abs()

Return a Series/DataFrame with absolute numeric value of each element.

This docstring was copied from pandas.core.frame.DataFrame.abs.

Some inconsistencies with the Dask version may exist.

This function only applies to elements that are all numeric.

Returns:
abs

Series/DataFrame containing the absolute value of each element.

See also

numpy.absolute
calculate the absolute value element-wise.

Notes

For complex inputs, 1.2 + 1j, the absolute value is \(\sqrt{ a^2 + b^2 }\).

Examples

Absolute numeric values in a Series.

>>> s = pd.Series([-1.10, 2, -3.33, 4])  # doctest: +SKIP
>>> s.abs()  # doctest: +SKIP
0    1.10
1    2.00
2    3.33
3    4.00
dtype: float64

Absolute numeric values in a Series with complex numbers.

>>> s = pd.Series([1.2 + 1j])  # doctest: +SKIP
>>> s.abs()  # doctest: +SKIP
0    1.56205
dtype: float64

Absolute numeric values in a Series with a Timedelta element.

>>> s = pd.Series([pd.Timedelta('1 days')])  # doctest: +SKIP
>>> s.abs()  # doctest: +SKIP
0   1 days
dtype: timedelta64[ns]

Select rows with data closest to certain value using argsort (from StackOverflow).

>>> df = pd.DataFrame({  # doctest: +SKIP
...     'a': [4, 5, 6, 7],
...     'b': [10, 20, 30, 40],
...     'c': [100, 50, -30, -50]
... })
>>> df  # doctest: +SKIP
     a    b    c
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50
>>> df.loc[(df.c - 43).abs().argsort()]  # doctest: +SKIP
     a    b    c
1    5   20   50
0    4   10  100
2    6   30  -30
3    7   40  -50
add(other, axis='columns', level=None, fill_value=None)

Addition of dataframe and other, element-wise (binary operator add).

Equivalent to dataframe + other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.radd

Notes

Mismatched indices will be unioned together

Examples

>>> a = pd.DataFrame([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],  # doctest: +SKIP
...                  columns=['one'])
>>> a  # doctest: +SKIP
   one
a  1.0
b  1.0
c  1.0
d  NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],  # doctest: +SKIP
...                       two=[np.nan, 2, np.nan, 2]),
...                  index=['a', 'b', 'd', 'e'])
>>> b  # doctest: +SKIP
   one  two
a  1.0  NaN
b  NaN  2.0
d  1.0  NaN
e  NaN  2.0
>>> a.add(b, fill_value=0)  # doctest: +SKIP
   one  two
a  2.0  NaN
b  1.0  2.0
c  1.0  NaN
d  1.0  NaN
e  NaN  2.0
align(other, join='outer', axis=None, fill_value=None)

Align two objects on their axes with the specified join method for each axis Index

This docstring was copied from pandas.core.frame.DataFrame.align.

Some inconsistencies with the Dask version may exist.

Parameters:
other : DataFrame or Series
join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’
axis : allowed axis of the other object, default None

Align on index (0), columns (1), or both (None)

level : int or level name, default None (Not supported in Dask)

Broadcast across a level, matching Index values on the passed MultiIndex level

copy : boolean, default True (Not supported in Dask)

Always returns new objects. If copy=False and no reindexing is required then original objects are returned.

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

method : str, default None (Not supported in Dask)
limit : int, default None (Not supported in Dask)
fill_axis : {0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)

Filling axis, method and limit

broadcast_axis : {0 or ‘index’, 1 or ‘columns’}, default None (Not supported in Dask)

Broadcast values along this axis, if aligning two objects of different dimensions

Returns:
(left, right) : (DataFrame, type of other)

Aligned objects

all(axis=None, skipna=True, split_every=False, out=None)

Return whether all elements are True, potentially over an axis.

This docstring was copied from pandas.core.frame.DataFrame.all.

Some inconsistencies with the Dask version may exist.

Returns True if all elements within a series or along a Dataframe axis are non-zero, not-empty or not-False.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

  • 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
  • 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.
  • None : reduce all axes, return a scalar.
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

bool_only : boolean, default None (Not supported in Dask)

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
all : Series or DataFrame (if level specified)

See also

pandas.Series.all
Return True if all elements are True
pandas.DataFrame.any
Return True if one (or more) elements are True

Examples

Series

>>> pd.Series([True, True]).all()  # doctest: +SKIP
True
>>> pd.Series([True, False]).all()  # doctest: +SKIP
False

DataFrames

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
   col1   col2
0  True   True
1  True  False

Default behaviour checks if column-wise values all return True.

>>> df.all()  # doctest: +SKIP
col1     True
col2    False
dtype: bool

Specify axis='columns' to check if row-wise values all return True.

>>> df.all(axis='columns')  # doctest: +SKIP
0     True
1    False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None)  # doctest: +SKIP
False
any(axis=None, skipna=True, split_every=False, out=None)

Return whether any element is True over requested axis.

This docstring was copied from pandas.core.frame.DataFrame.any.

Some inconsistencies with the Dask version may exist.

Unlike DataFrame.all(), this performs an or operation. If any of the values along the specified axis is True, this will return True.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

  • 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
  • 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.
  • None : reduce all axes, return a scalar.
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

bool_only : boolean, default None (Not supported in Dask)

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
any : Series or DataFrame (if level specified)

See also

pandas.DataFrame.all
Return whether all elements are True.

Examples

Series

For Series input, the output is a scalar indicating whether any element is True.

>>> pd.Series([True, False]).any()  # doctest: +SKIP
True

DataFrame

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
   A  B  C
0  1  0  0
1  2  2  0
>>> df.any()  # doctest: +SKIP
A     True
B     True
C    False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
       A  B
0   True  1
1  False  2
>>> df.any(axis='columns')  # doctest: +SKIP
0    True
1    True
dtype: bool
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
       A  B
0   True  1
1  False  0
>>> df.any(axis='columns')  # doctest: +SKIP
0    True
1    False
dtype: bool

Aggregating over the entire DataFrame with axis=None.

>>> df.any(axis=None)  # doctest: +SKIP
True

any for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any()  # doctest: +SKIP
Series([], dtype: bool)
append(other, interleave_partitions=False)

Append rows of other to the end of this frame, returning a new object. Columns not in this frame are added as new columns.

This docstring was copied from pandas.core.frame.DataFrame.append.

Some inconsistencies with the Dask version may exist.

Parameters:
other : DataFrame or Series/dict-like object, or list of these

The data to append.

ignore_index : boolean, default False (Not supported in Dask)

If True, do not use the index labels.

verify_integrity : boolean, default False (Not supported in Dask)

If True, raise ValueError on creating index with duplicates.

sort : boolean, default None (Not supported in Dask)

Sort columns if the columns of self and other are not aligned. The default sorting is deprecated and will change to not-sorting in a future version of pandas. Explicitly pass sort=True to silence the warning and sort. Explicitly pass sort=False to silence the warning and not sort.

New in version 0.23.0.

Returns:
appended : DataFrame

See also

pandas.concat
General function to concatenate DataFrame, Series or Panel objects

Notes

If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged.

Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once.

Examples

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))  # doctest: +SKIP
>>> df  # doctest: +SKIP
   A  B
0  1  2
1  3  4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))  # doctest: +SKIP
>>> df.append(df2)  # doctest: +SKIP
   A  B
0  1  2
1  3  4
0  5  6
1  7  8

With ignore_index set to True:

>>> df.append(df2, ignore_index=True)  # doctest: +SKIP
   A  B
0  1  2
1  3  4
2  5  6
3  7  8

The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources.

Less efficient:

>>> df = pd.DataFrame(columns=['A'])  # doctest: +SKIP
>>> for i in range(5):  # doctest: +SKIP
...     df = df.append({'A': i}, ignore_index=True)
>>> df  # doctest: +SKIP
   A
0  0
1  1
2  2
3  3
4  4

More efficient:

>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)],  # doctest: +SKIP
...           ignore_index=True)
   A
0  0
1  1
2  2
3  3
4  4
apply(func, axis=0, broadcast=None, raw=False, reduce=None, args=(), meta='__no_default__', **kwds)

Parallel version of pandas.DataFrame.apply

This mimics the pandas version except for the following:

  1. Only axis=1 is supported (and must be specified explicitly).
  2. The user should provide output metadata via the meta keyword.
Parameters:
func : function

Function to apply to each column/row

axis : {0 or ‘index’, 1 or ‘columns’}, default 0
  • 0 or ‘index’: apply function to each column (NOT SUPPORTED)
  • 1 or ‘columns’: apply function to each row
meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional

An empty pd.DataFrame or pd.Series that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a DataFrame, a dict of {name: dtype} or iterable of (name, dtype) can be provided. Instead of a series, a tuple of (name, dtype) can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing meta is recommended. For more information, see dask.dataframe.utils.make_meta.

args : tuple

Positional arguments to pass to function in addition to the array/series

Additional keyword arguments will be passed as keywords to the function
Returns:
applied : Series or DataFrame

See also

dask.DataFrame.map_partitions

Examples

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5],
...                    'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

Apply a function to row-wise passing in extra arguments in args and kwargs:

>>> def myadd(row, a, b=1):
...     return row.sum() + a + b
>>> res = ddf.apply(myadd, axis=1, args=(2,), b=1.5)

By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the meta keyword. This can be specified in many forms, for more information see dask.dataframe.utils.make_meta.

Here we specify the output is a Series with name 'x', and dtype float64:

>>> res = ddf.apply(myadd, axis=1, args=(2,), b=1.5, meta=('x', 'f8'))

In the case where the metadata doesn’t change, you can also pass in the object itself directly:

>>> res = ddf.apply(lambda row: row + 1, axis=1, meta=ddf)
applymap(func, meta='__no_default__')

Apply a function to a Dataframe elementwise.

This docstring was copied from pandas.core.frame.DataFrame.applymap.

Some inconsistencies with the Dask version may exist.

This method applies a function that accepts and returns a scalar to every element of a DataFrame.

Parameters:
func : callable

Python function, returns a single value from a single value.

Returns:
DataFrame

Transformed DataFrame.

See also

DataFrame.apply
Apply a function along input axis of DataFrame

Examples

>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])  # doctest: +SKIP
>>> df  # doctest: +SKIP
       0      1
0  1.000  2.120
1  3.356  4.567
>>> df.applymap(lambda x: len(str(x)))  # doctest: +SKIP
   0  1
0  3  4
1  5  5

Note that a vectorized version of func often exists, which will be much faster. You could square each number elementwise.

>>> df.applymap(lambda x: x**2)  # doctest: +SKIP
           0          1
0   1.000000   4.494400
1  11.262736  20.857489

But it’s better to avoid applymap in that case.

>>> df ** 2  # doctest: +SKIP
           0          1
0   1.000000   4.494400
1  11.262736  20.857489
assign(**kwargs)

Assign new columns to a DataFrame, returning a new object (a copy) with the new columns added to the original ones. Existing columns that are re-assigned will be overwritten.

This docstring was copied from pandas.core.frame.DataFrame.assign.

Some inconsistencies with the Dask version may exist.

Parameters:
kwargs : keyword, value pairs

keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn’t check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned.

Returns:
df : DataFrame

A new DataFrame with the new columns in addition to all the existing columns.

Notes

Assigning multiple columns within the same assign is possible. For Python 3.6 and above, later items in ‘**kwargs’ may refer to newly created or modified columns in ‘df’; items are computed and assigned into ‘df’ in order. For Python 3.5 and below, the order of keyword arguments is not specified, you cannot refer to newly created or modified columns. All items are computed first, and then assigned in alphabetical order.

Changed in version 0.23.0: Keyword argument order is maintained for Python 3.6 and later.

Examples

>>> df = pd.DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})  # doctest: +SKIP

Where the value is a callable, evaluated on df:

>>> df.assign(ln_A = lambda x: np.log(x.A))  # doctest: +SKIP
    A         B      ln_A
0   1  0.426905  0.000000
1   2 -0.780949  0.693147
2   3 -0.418711  1.098612
3   4 -0.269708  1.386294
4   5 -0.274002  1.609438
5   6 -0.500792  1.791759
6   7  1.649697  1.945910
7   8 -1.495604  2.079442
8   9  0.549296  2.197225
9  10 -0.758542  2.302585

Where the value already exists and is inserted:

>>> newcol = np.log(df['A'])  # doctest: +SKIP
>>> df.assign(ln_A=newcol)  # doctest: +SKIP
    A         B      ln_A
0   1  0.426905  0.000000
1   2 -0.780949  0.693147
2   3 -0.418711  1.098612
3   4 -0.269708  1.386294
4   5 -0.274002  1.609438
5   6 -0.500792  1.791759
6   7  1.649697  1.945910
7   8 -1.495604  2.079442
8   9  0.549296  2.197225
9  10 -0.758542  2.302585

Where the keyword arguments depend on each other

>>> df = pd.DataFrame({'A': [1, 2, 3]})  # doctest: +SKIP
>>> df.assign(B=df.A, C=lambda x:x['A']+ x['B'])  # doctest: +SKIP
    A  B  C
 0  1  1  2
 1  2  2  4
 2  3  3  6
astype(dtype)

Cast a pandas object to a specified dtype dtype.

This docstring was copied from pandas.core.frame.DataFrame.astype.

Some inconsistencies with the Dask version may exist.

Parameters:
dtype : data type, or dict of column name -> data type

Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

copy : bool, default True. (Not supported in Dask)

Return a copy when copy=True (be very careful setting copy=False as changes to values then may propagate to other pandas objects).

errors : {‘raise’, ‘ignore’}, default ‘raise’. (Not supported in Dask)

Control raising of exceptions on invalid data for provided dtype.

  • raise : allow exceptions to be raised
  • ignore : suppress exceptions. On error return original object

New in version 0.20.0.

raise_on_error : raise on invalid input

Deprecated since version 0.20.0: Use errors instead

kwargs : keyword arguments to pass on to the constructor
Returns:
casted : type of caller

See also

pandas.to_datetime
Convert argument to datetime.
pandas.to_timedelta
Convert argument to timedelta.
pandas.to_numeric
Convert argument to a numeric type.
numpy.ndarray.astype
Cast a numpy array to a specified type.

Examples

>>> ser = pd.Series([1, 2], dtype='int32')  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    1
1    2
dtype: int32
>>> ser.astype('int64')  # doctest: +SKIP
0    1
1    2
dtype: int64

Convert to categorical type:

>>> ser.astype('category')  # doctest: +SKIP
0    1
1    2
dtype: category
Categories (2, int64): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> ser.astype('category', ordered=True, categories=[2, 1])  # doctest: +SKIP
0    1
1    2
dtype: category
Categories (2, int64): [2 < 1]

Note that using copy=False and changing data on a new pandas object may propagate changes:

>>> s1 = pd.Series([1,2])  # doctest: +SKIP
>>> s2 = s1.astype('int64', copy=False)  # doctest: +SKIP
>>> s2[0] = 10  # doctest: +SKIP
>>> s1  # note that s1[0] has changed too  # doctest: +SKIP
0    10
1     2
dtype: int64
bfill(axis=None, limit=None)

Synonym for DataFrame.fillna(method='bfill')

categorize(columns=None, index=None, split_every=None, **kwargs)

Convert columns of the DataFrame to category dtype.

Parameters:
columns : list, optional

A list of column names to convert to categoricals. By default any column with an object dtype is converted to a categorical, and any unknown categoricals are made known.

index : bool, optional

Whether to categorize the index. By default, object indices are converted to categorical, and unknown categorical indices are made known. Set True to always categorize the index, False to never.

split_every : int, optional

Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used. Default is 16.

kwargs

Keyword arguments are passed on to compute.

clear_divisions()

Forget division information

clip(lower=None, upper=None, out=None)

Trim values at input threshold(s).

This docstring was copied from pandas.core.frame.DataFrame.clip.

Some inconsistencies with the Dask version may exist.

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.

Parameters:
lower : float or array_like, default None

Minimum threshold value. All values below this threshold will be set to it.

upper : float or array_like, default None

Maximum threshold value. All values above this threshold will be set to it.

axis : int or string axis name, optional (Not supported in Dask)

Align object with lower and upper along the given axis.

inplace : boolean, default False (Not supported in Dask)

Whether to perform the operation in place on the data.

New in version 0.21.0.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with numpy.

Returns:
Series or DataFrame

Same type as calling object with the values outside the clip boundaries replaced

See also

clip_lower
Clip values below specified threshold(s).
clip_upper
Clip values above specified threshold(s).

Examples

>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}  # doctest: +SKIP
>>> df = pd.DataFrame(data)  # doctest: +SKIP
>>> df  # doctest: +SKIP
   col_0  col_1
0      9     -2
1     -3     -7
2      0      6
3     -1      8
4      5     -5

Clips per column using lower and upper thresholds:

>>> df.clip(-4, 6)  # doctest: +SKIP
   col_0  col_1
0      6     -2
1     -3     -4
2      0      6
3     -1      6
4      5     -4

Clips using specific lower and upper thresholds per column element:

>>> t = pd.Series([2, -4, -1, 6, 3])  # doctest: +SKIP
>>> t  # doctest: +SKIP
0    2
1   -4
2   -1
3    6
4    3
dtype: int64
>>> df.clip(t, t + 4, axis=0)  # doctest: +SKIP
   col_0  col_1
0      6      2
1     -3     -4
2      0      3
3      6      8
4      5      3
clip_lower(threshold)

Return copy of the input with values below a threshold truncated.

This docstring was copied from pandas.core.frame.DataFrame.clip_lower.

Some inconsistencies with the Dask version may exist.

Parameters:
threshold : numeric or array-like

Minimum value allowed. All values below threshold will be set to this value.

  • float : every value is compared to threshold.
  • array-like : The shape of threshold should match the object it’s compared to. When self is a Series, threshold should be the length. When self is a DataFrame, threshold should 2-D and the same shape as self for axis=None, or 1-D and the same length as the axis being compared.
axis : {0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)

Align self with threshold along the given axis.

inplace : boolean, default False (Not supported in Dask)

Whether to perform the operation in place on the data.

New in version 0.21.0.

Returns:
clipped : same type as input

See also

Series.clip
Return copy of input with values below and above thresholds truncated.
Series.clip_upper
Return copy of input with values above threshold truncated.

Examples

Series single threshold clipping:

>>> s = pd.Series([5, 6, 7, 8, 9])  # doctest: +SKIP
>>> s.clip_lower(8)  # doctest: +SKIP
0    8
1    8
2    8
3    8
4    9
dtype: int64

Series clipping element-wise using an array of thresholds. threshold should be the same length as the Series.

>>> elemwise_thresholds = [4, 8, 7, 2, 5]  # doctest: +SKIP
>>> s.clip_lower(elemwise_thresholds)  # doctest: +SKIP
0    5
1    8
2    7
3    8
4    9
dtype: int64

DataFrames can be compared to a scalar.

>>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
   A  B
0  1  2
1  3  4
2  5  6
>>> df.clip_lower(3)  # doctest: +SKIP
   A  B
0  3  3
1  3  4
2  5  6

Or to an array of values. By default, threshold should be the same shape as the DataFrame.

>>> df.clip_lower(np.array([[3, 4], [2, 2], [6, 2]]))  # doctest: +SKIP
   A  B
0  3  4
1  3  4
2  6  6

Control how threshold is broadcast with axis. In this case threshold should be the same length as the axis specified by axis.

>>> df.clip_lower(np.array([3, 3, 5]), axis='index')  # doctest: +SKIP
   A  B
0  3  3
1  3  4
2  5  6
>>> df.clip_lower(np.array([4, 5]), axis='columns')  # doctest: +SKIP
   A  B
0  4  5
1  4  5
2  5  6
clip_upper(threshold)

Return copy of input with values above given value(s) truncated.

This docstring was copied from pandas.core.frame.DataFrame.clip_upper.

Some inconsistencies with the Dask version may exist.

Parameters:
threshold : float or array_like
axis : int or string axis name, optional (Not supported in Dask)

Align object with threshold along the given axis.

inplace : boolean, default False (Not supported in Dask)

Whether to perform the operation in place on the data

New in version 0.21.0.

Returns:
clipped : same type as input

See also

clip

combine(other, func, fill_value=None, overwrite=True)

Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

This docstring was copied from pandas.core.frame.DataFrame.combine.

Some inconsistencies with the Dask version may exist.

Parameters:
other : DataFrame
func : function

Function that takes two series as inputs and return a Series or a scalar

fill_value : scalar value
overwrite : boolean, default True

If True then overwrite values for common keys in the calling frame

Returns:
result : DataFrame

See also

DataFrame.combine_first
Combine two DataFrame objects and default to non-null values in frame calling the method

Examples

>>> df1 = DataFrame({'A': [0, 0], 'B': [4, 4]})  # doctest: +SKIP
>>> df2 = DataFrame({'A': [1, 1], 'B': [3, 3]})  # doctest: +SKIP
>>> df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2)  # doctest: +SKIP
   A  B
0  0  3
1  0  3
combine_first(other)

Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns

This docstring was copied from pandas.core.frame.DataFrame.combine_first.

Some inconsistencies with the Dask version may exist.

Parameters:
other : DataFrame
Returns:
combined : DataFrame

See also

DataFrame.combine
Perform series-wise operation on two DataFrames using a given function

Examples

df1’s values prioritized, use values from df2 to fill holes:

>>> df1 = pd.DataFrame([[1, np.nan]])  # doctest: +SKIP
>>> df2 = pd.DataFrame([[3, 4]])  # doctest: +SKIP
>>> df1.combine_first(df2)  # doctest: +SKIP
   0    1
0  1  4.0
compute(**kwargs)

Compute this dask collection

This turns a lazy Dask collection into its in-memory equivalent. For example a Dask.array turns into a numpy.array() and a Dask.dataframe turns into a Pandas dataframe. The entire dataset must fit into memory before calling this operation.

Parameters:
scheduler : string, optional

Which scheduler to use like “threads”, “synchronous” or “processes”. If not provided, the default is to check the global settings first, and then fall back to the collection defaults.

optimize_graph : bool, optional

If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging.

kwargs

Extra keywords to forward to the scheduler function.

See also

dask.base.compute

copy()

Make a copy of the dataframe

This is strictly a shallow copy of the underlying computational graph. It does not affect the underlying data

corr(method='pearson', min_periods=None, split_every=False)

Compute pairwise correlation of columns, excluding NA/null values

This docstring was copied from pandas.core.frame.DataFrame.corr.

Some inconsistencies with the Dask version may exist.

Parameters:
method : {‘pearson’, ‘kendall’, ‘spearman’}
  • pearson : standard correlation coefficient
  • kendall : Kendall Tau correlation coefficient
  • spearman : Spearman rank correlation
min_periods : int, optional

Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation

Returns:
y : DataFrame
count(axis=None, split_every=False)

Count non-NA cells for each column or row.

This docstring was copied from pandas.core.frame.DataFrame.count.

Some inconsistencies with the Dask version may exist.

The values None, NaN, NaT, and optionally numpy.inf (depending on pandas.options.mode.use_inf_as_na) are considered NA.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.

level : int or str, optional (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. A str specifies the level name.

numeric_only : boolean, default False (Not supported in Dask)

Include only float, int or boolean data.

Returns:
Series or DataFrame

For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame.

See also

Series.count
number of non-NA elements in a Series
DataFrame.shape
number of DataFrame rows and columns (including NA elements)
DataFrame.isna
boolean same-sized DataFrame showing places of NA elements

Examples

Constructing DataFrame from a dictionary:

>>> df = pd.DataFrame({"Person":  # doctest: +SKIP
...                    ["John", "Myla", None, "John", "Myla"],
...                    "Age": [24., np.nan, 21., 33, 26],
...                    "Single": [False, True, True, True, False]})
>>> df  # doctest: +SKIP
   Person   Age  Single
0    John  24.0   False
1    Myla   NaN    True
2    None  21.0    True
3    John  33.0    True
4    Myla  26.0   False

Notice the uncounted NA values:

>>> df.count()  # doctest: +SKIP
Person    4
Age       4
Single    5
dtype: int64

Counts for each row:

>>> df.count(axis='columns')  # doctest: +SKIP
0    3
1    2
2    2
3    3
4    3
dtype: int64

Counts for one level of a MultiIndex:

>>> df.set_index(["Person", "Single"]).count(level="Person")  # doctest: +SKIP
        Age
Person
John      2
Myla      1
cov(min_periods=None, split_every=False)

Compute pairwise covariance of columns, excluding NA/null values.

This docstring was copied from pandas.core.frame.DataFrame.cov.

Some inconsistencies with the Dask version may exist.

Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the covariance matrix of the columns of the DataFrame.

Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as NaN.

This method is generally used for the analysis of time series data to understand the relationship between different measures across time.

Parameters:
min_periods : int, optional

Minimum number of observations required per pair of columns to have a valid result.

Returns:
DataFrame

The covariance matrix of the series of the DataFrame.

See also

pandas.Series.cov
compute covariance with another Series
pandas.core.window.EWM.cov
expoential weighted sample covariance
pandas.core.window.Expanding.cov
expanding sample covariance
pandas.core.window.Rolling.cov
rolling sample covariance

Notes

Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1.

For DataFrames that have Series that are missing data (assuming that data is missing at random) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series.

However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.

Examples

>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)],  # doctest: +SKIP
...                   columns=['dogs', 'cats'])
>>> df.cov()  # doctest: +SKIP
          dogs      cats
dogs  0.666667 -1.000000
cats -1.000000  1.666667
>>> np.random.seed(42)  # doctest: +SKIP
>>> df = pd.DataFrame(np.random.randn(1000, 5),  # doctest: +SKIP
...                   columns=['a', 'b', 'c', 'd', 'e'])
>>> df.cov()  # doctest: +SKIP
          a         b         c         d         e
a  0.998438 -0.020161  0.059277 -0.008943  0.014144
b -0.020161  1.059352 -0.008543 -0.024738  0.009826
c  0.059277 -0.008543  1.010670 -0.001486 -0.000271
d -0.008943 -0.024738 -0.001486  0.921297 -0.013692
e  0.014144  0.009826 -0.000271 -0.013692  0.977795

Minimum number of periods

This method also supports an optional min_periods keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result:

>>> np.random.seed(42)  # doctest: +SKIP
>>> df = pd.DataFrame(np.random.randn(20, 3),  # doctest: +SKIP
...                   columns=['a', 'b', 'c'])
>>> df.loc[df.index[:5], 'a'] = np.nan  # doctest: +SKIP
>>> df.loc[df.index[5:10], 'b'] = np.nan  # doctest: +SKIP
>>> df.cov(min_periods=12)  # doctest: +SKIP
          a         b         c
a  0.316741       NaN -0.150812
b       NaN  1.248003  0.191417
c -0.150812  0.191417  0.895202
cummax(axis=None, skipna=True, out=None)

Return cumulative maximum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cummax.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
cummax : Series or DataFrame

See also

pandas.core.window.Expanding.max
Similar functionality but ignores NaN values.
DataFrame.max
Return the maximum over DataFrame axis.
DataFrame.cummax
Return cumulative maximum over DataFrame axis.
DataFrame.cummin
Return cumulative minimum over DataFrame axis.
DataFrame.cumsum
Return cumulative sum over DataFrame axis.
DataFrame.cumprod
Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])  # doctest: +SKIP
>>> s  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummax()  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3    5.0
4    5.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummax(skipna=False)  # doctest: +SKIP
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],  # doctest: +SKIP
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cummax()  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  3.0  1.0

To iterate over columns and find the maximum in each row, use axis=1

>>> df.cummax(axis=1)  # doctest: +SKIP
     A    B
0  2.0  2.0
1  3.0  NaN
2  1.0  1.0
cummin(axis=None, skipna=True, out=None)

Return cumulative minimum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cummin.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
cummin : Series or DataFrame

See also

pandas.core.window.Expanding.min
Similar functionality but ignores NaN values.
DataFrame.min
Return the minimum over DataFrame axis.
DataFrame.cummax
Return cumulative maximum over DataFrame axis.
DataFrame.cummin
Return cumulative minimum over DataFrame axis.
DataFrame.cumsum
Return cumulative sum over DataFrame axis.
DataFrame.cumprod
Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])  # doctest: +SKIP
>>> s  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin()  # doctest: +SKIP
0    2.0
1    NaN
2    2.0
3   -1.0
4   -1.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummin(skipna=False)  # doctest: +SKIP
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],  # doctest: +SKIP
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cummin()  # doctest: +SKIP
     A    B
0  2.0  1.0
1  2.0  NaN
2  1.0  0.0

To iterate over columns and find the minimum in each row, use axis=1

>>> df.cummin(axis=1)  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0
cumprod(axis=None, skipna=True, dtype=None, out=None)

Return cumulative product over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cumprod.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative product.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
cumprod : Series or DataFrame

See also

pandas.core.window.Expanding.prod
Similar functionality but ignores NaN values.
DataFrame.prod
Return the product over DataFrame axis.
DataFrame.cummax
Return cumulative maximum over DataFrame axis.
DataFrame.cummin
Return cumulative minimum over DataFrame axis.
DataFrame.cumsum
Return cumulative sum over DataFrame axis.
DataFrame.cumprod
Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])  # doctest: +SKIP
>>> s  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod()  # doctest: +SKIP
0     2.0
1     NaN
2    10.0
3   -10.0
4    -0.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumprod(skipna=False)  # doctest: +SKIP
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],  # doctest: +SKIP
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or axis='index'.

>>> df.cumprod()  # doctest: +SKIP
     A    B
0  2.0  1.0
1  6.0  NaN
2  6.0  0.0

To iterate over columns and find the product in each row, use axis=1

>>> df.cumprod(axis=1)  # doctest: +SKIP
     A    B
0  2.0  2.0
1  3.0  NaN
2  1.0  0.0
cumsum(axis=None, skipna=True, dtype=None, out=None)

Return cumulative sum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cumsum.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
cumsum : Series or DataFrame

See also

pandas.core.window.Expanding.sum
Similar functionality but ignores NaN values.
DataFrame.sum
Return the sum over DataFrame axis.
DataFrame.cummax
Return cumulative maximum over DataFrame axis.
DataFrame.cummin
Return cumulative minimum over DataFrame axis.
DataFrame.cumsum
Return cumulative sum over DataFrame axis.
DataFrame.cumprod
Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])  # doctest: +SKIP
>>> s  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumsum()  # doctest: +SKIP
0    2.0
1    NaN
2    7.0
3    6.0
4    6.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumsum(skipna=False)  # doctest: +SKIP
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],  # doctest: +SKIP
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cumsum()  # doctest: +SKIP
     A    B
0  2.0  1.0
1  5.0  NaN
2  6.0  1.0

To iterate over columns and find the sum in each row, use axis=1

>>> df.cumsum(axis=1)  # doctest: +SKIP
     A    B
0  2.0  3.0
1  3.0  NaN
2  1.0  1.0
describe(split_every=False, percentiles=None, percentiles_method='default', include=None, exclude=None)

Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.

This docstring was copied from pandas.core.frame.DataFrame.describe.

Some inconsistencies with the Dask version may exist.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters:
percentiles : list-like of numbers, optional

The percentiles to include in the output. All should fall between 0 and 1. The default is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

include : ‘all’, list-like of dtypes or None (default), optional

A white list of data types to include in the result. Ignored for Series. Here are the options:

  • ‘all’ : All columns of the input will be included in the output.
  • A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit numpy.number. To limit it instead to object columns submit the numpy.object data type. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O'])). To select pandas categorical columns, use 'category'
  • None (default) : The result will include all numeric columns.
exclude : list-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for Series. Here are the options:

  • A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit numpy.number. To exclude object columns submit the data type numpy.object. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O'])). To exclude pandas categorical columns, use 'category'
  • None (default) : The result will exclude nothing.
Returns:
summary: Series/DataFrame of summary statistics

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and freq. The top is the most common value. The freq is the most common value’s frequency. Timestamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If include='all' is provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3])  # doctest: +SKIP
>>> s.describe()  # doctest: +SKIP
count    3.0
mean     2.0
std      1.0
min      1.0
25%      1.5
50%      2.0
75%      2.5
max      3.0

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c'])  # doctest: +SKIP
>>> s.describe()  # doctest: +SKIP
count     4
unique    3
top       a
freq      2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([  # doctest: +SKIP
...   np.datetime64("2000-01-01"),
...   np.datetime64("2010-01-01"),
...   np.datetime64("2010-01-01")
... ])
>>> s.describe()  # doctest: +SKIP
count                       3
unique                      2
top       2010-01-01 00:00:00
freq                        2
first     2000-01-01 00:00:00
last      2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({ 'object': ['a', 'b', 'c'],  # doctest: +SKIP
...                     'numeric': [1, 2, 3],
...                     'categorical': pd.Categorical(['d','e','f'])
...                   })
>>> df.describe()  # doctest: +SKIP
       numeric
count      3.0
mean       2.0
std        1.0
min        1.0
25%        1.5
50%        2.0
75%        2.5
max        3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')  # doctest: +SKIP
        categorical  numeric object
count            3      3.0      3
unique           3      NaN      3
top              f      NaN      c
freq             1      NaN      1
mean           NaN      2.0    NaN
std            NaN      1.0    NaN
min            NaN      1.0    NaN
25%            NaN      1.5    NaN
50%            NaN      2.0    NaN
75%            NaN      2.5    NaN
max            NaN      3.0    NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe()  # doctest: +SKIP
count    3.0
mean     2.0
std      1.0
min      1.0
25%      1.5
50%      2.0
75%      2.5
max      3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number])  # doctest: +SKIP
       numeric
count      3.0
mean       2.0
std        1.0
min        1.0
25%        1.5
50%        2.0
75%        2.5
max        3.0

Including only string columns in a DataFrame description.

>>> df.describe(include=[np.object])  # doctest: +SKIP
       object
count       3
unique      3
top         c
freq        1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category'])  # doctest: +SKIP
       categorical
count            3
unique           3
top              f
freq             1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number])  # doctest: +SKIP
       categorical object
count            3      3
unique           3      3
top              f      c
freq             1      1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[np.object])  # doctest: +SKIP
        categorical  numeric
count            3      3.0
unique           3      NaN
top              f      NaN
freq             1      NaN
mean           NaN      2.0
std            NaN      1.0
min            NaN      1.0
25%            NaN      1.5
50%            NaN      2.0
75%            NaN      2.5
max            NaN      3.0
diff(periods=1, axis=0)

First discrete difference of element.

This docstring was copied from pandas.core.frame.DataFrame.diff.

Some inconsistencies with the Dask version may exist.

Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row).

Parameters:
periods : int, default 1

Periods to shift for calculating difference, accepts negative values.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Take difference over rows (0) or columns (1).

New in version 0.16.1..

Returns:
diffed : DataFrame

See also

Series.diff
First discrete difference for a Series.
DataFrame.pct_change
Percent change over given number of periods.
DataFrame.shift
Shift index by desired number of periods with an optional time freq.

Examples

Difference with previous row

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],  # doctest: +SKIP
...                    'b': [1, 1, 2, 3, 5, 8],
...                    'c': [1, 4, 9, 16, 25, 36]})
>>> df  # doctest: +SKIP
   a  b   c
0  1  1   1
1  2  1   4
2  3  2   9
3  4  3  16
4  5  5  25
5  6  8  36
>>> df.diff()  # doctest: +SKIP
     a    b     c
0  NaN  NaN   NaN
1  1.0  0.0   3.0
2  1.0  1.0   5.0
3  1.0  1.0   7.0
4  1.0  2.0   9.0
5  1.0  3.0  11.0

Difference with previous column

>>> df.diff(axis=1)  # doctest: +SKIP
    a    b     c
0 NaN  0.0   0.0
1 NaN -1.0   3.0
2 NaN -1.0   7.0
3 NaN -1.0  13.0
4 NaN  0.0  20.0
5 NaN  2.0  28.0

Difference with 3rd previous row

>>> df.diff(periods=3)  # doctest: +SKIP
     a    b     c
0  NaN  NaN   NaN
1  NaN  NaN   NaN
2  NaN  NaN   NaN
3  3.0  2.0  15.0
4  3.0  4.0  21.0
5  3.0  6.0  27.0

Difference with following row

>>> df.diff(periods=-1)  # doctest: +SKIP
     a    b     c
0 -1.0  0.0  -3.0
1 -1.0 -1.0  -5.0
2 -1.0 -1.0  -7.0
3 -1.0 -2.0  -9.0
4 -1.0 -3.0 -11.0
5  NaN  NaN   NaN
div(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

Notes

Mismatched indices will be unioned together

Examples

None

drop(labels, axis=0, errors='raise')

Drop specified labels from rows or columns.

This docstring was copied from pandas.core.frame.DataFrame.drop.

Some inconsistencies with the Dask version may exist.

Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level.

Parameters:
labels : single label or list-like

Index or column labels to drop.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).

index, columns : single label or list-like

Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).

New in version 0.21.0.

level : int or level name, optional (Not supported in Dask)

For MultiIndex, level from which the labels will be removed.

inplace : bool, default False (Not supported in Dask)

If True, do operation inplace and return None.

errors : {‘ignore’, ‘raise’}, default ‘raise’

If ‘ignore’, suppress error and only existing labels are dropped.

Returns:
dropped : pandas.DataFrame
Raises:
KeyError

If none of the labels are found in the selected axis

See also

DataFrame.loc
Label-location based indexer for selection by label.
DataFrame.dropna
Return DataFrame with labels on given axis omitted where (all or any) data are missing
DataFrame.drop_duplicates
Return DataFrame with duplicate rows removed, optionally only considering certain columns
Series.drop
Return Series with specified index labels removed.

Examples

>>> df = pd.DataFrame(np.arange(12).reshape(3,4),  # doctest: +SKIP
...                   columns=['A', 'B', 'C', 'D'])
>>> df  # doctest: +SKIP
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

Drop columns

>>> df.drop(['B', 'C'], axis=1)  # doctest: +SKIP
   A   D
0  0   3
1  4   7
2  8  11
>>> df.drop(columns=['B', 'C'])  # doctest: +SKIP
   A   D
0  0   3
1  4   7
2  8  11

Drop a row by index

>>> df.drop([0, 1])  # doctest: +SKIP
   A  B   C   D
2  8  9  10  11

Drop columns and/or rows of MultiIndex DataFrame

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],  # doctest: +SKIP
...                              ['speed', 'weight', 'length']],
...                      labels=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
...                              [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'],  # doctest: +SKIP
...                   data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
...                         [250, 150], [1.5, 0.8], [320, 250],
...                         [1, 0.8], [0.3,0.2]])
>>> df  # doctest: +SKIP
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
        length  1.5     1.0
cow     speed   30.0    20.0
        weight  250.0   150.0
        length  1.5     0.8
falcon  speed   320.0   250.0
        weight  1.0     0.8
        length  0.3     0.2
>>> df.drop(index='cow', columns='small')  # doctest: +SKIP
                big
lama    speed   45.0
        weight  200.0
        length  1.5
falcon  speed   320.0
        weight  1.0
        length  0.3
>>> df.drop(index='length', level=1)  # doctest: +SKIP
                big     small
lama    speed   45.0    30.0
        weight  200.0   100.0
cow     speed   30.0    20.0
        weight  250.0   150.0
falcon  speed   320.0   250.0
        weight  1.0     0.8
drop_duplicates(split_every=None, split_out=1, **kwargs)

Return DataFrame with duplicate rows removed, optionally only considering certain columns

This docstring was copied from pandas.core.frame.DataFrame.drop_duplicates.

Some inconsistencies with the Dask version may exist.

Parameters:
subset : column label or sequence of labels, optional (Not supported in Dask)

Only consider certain columns for identifying duplicates, by default use all of the columns

keep : {‘first’, ‘last’, False}, default ‘first’ (Not supported in Dask)
  • first : Drop duplicates except for the first occurrence.
  • last : Drop duplicates except for the last occurrence.
  • False : Drop all duplicates.
inplace : boolean, default False (Not supported in Dask)

Whether to drop duplicates in place or to return a copy

Returns:
deduplicated : DataFrame
dropna(how='any', subset=None, thresh=None)

Remove missing values.

This docstring was copied from pandas.core.frame.DataFrame.dropna.

Some inconsistencies with the Dask version may exist.

See the User Guide for more on which values are considered missing, and how to work with missing data.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)

Determine if rows or columns which contain missing values are removed.

  • 0, or ‘index’ : Drop rows which contain missing values.
  • 1, or ‘columns’ : Drop columns which contain missing value.

Deprecated since version 0.23.0:: Pass tuple or list to drop on multiple

axes.

how : {‘any’, ‘all’}, default ‘any’

Determine if row or column is removed from DataFrame, when we have at least one NA or all NA.

  • ‘any’ : If any NA values are present, drop that row or column.
  • ‘all’ : If all values are NA, drop that row or column.
thresh : int, optional

Require that many non-NA values.

subset : array-like, optional

Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.

inplace : bool, default False (Not supported in Dask)

If True, do operation inplace and return None.

Returns:
DataFrame

DataFrame with NA entries dropped from it.

See also

DataFrame.isna
Indicate missing values.
DataFrame.notna
Indicate existing (non-missing) values.
DataFrame.fillna
Replace missing values.
Series.dropna
Drop missing values.
Index.dropna
Drop missing indices.

Examples

>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],  # doctest: +SKIP
...                    "toy": [np.nan, 'Batmobile', 'Bullwhip'],
...                    "born": [pd.NaT, pd.Timestamp("1940-04-25"),
...                             pd.NaT]})
>>> df  # doctest: +SKIP
       name        toy       born
0    Alfred        NaN        NaT
1    Batman  Batmobile 1940-04-25
2  Catwoman   Bullwhip        NaT

Drop the rows where at least one element is missing.

>>> df.dropna()  # doctest: +SKIP
     name        toy       born
1  Batman  Batmobile 1940-04-25

Drop the columns where at least one element is missing.

>>> df.dropna(axis='columns')  # doctest: +SKIP
       name
0    Alfred
1    Batman
2  Catwoman

Drop the rows where all elements are missing.

>>> df.dropna(how='all')  # doctest: +SKIP
       name        toy       born
0    Alfred        NaN        NaT
1    Batman  Batmobile 1940-04-25
2  Catwoman   Bullwhip        NaT

Keep only the rows with at least 2 non-NA values.

>>> df.dropna(thresh=2)  # doctest: +SKIP
       name        toy       born
1    Batman  Batmobile 1940-04-25
2  Catwoman   Bullwhip        NaT

Define in which columns to look for missing values.

>>> df.dropna(subset=['name', 'born'])  # doctest: +SKIP
       name        toy       born
1    Batman  Batmobile 1940-04-25

Keep the DataFrame with valid entries in the same variable.

>>> df.dropna(inplace=True)  # doctest: +SKIP
>>> df  # doctest: +SKIP
     name        toy       born
1  Batman  Batmobile 1940-04-25
dtypes

Return data types

eq(other, axis='columns', level=None)

Wrapper for flexible comparison methods eq

eval(expr, inplace=None, **kwargs)

Evaluate a string describing operations on DataFrame columns.

This docstring was copied from pandas.core.frame.DataFrame.eval.

Some inconsistencies with the Dask version may exist.

Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function.

Parameters:
expr : str

The expression string to evaluate.

inplace : bool, default False

If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned.

New in version 0.18.0..

kwargs : dict

See the documentation for eval() for complete details on the keyword arguments accepted by query().

Returns:
ndarray, scalar, or pandas object

The result of the evaluation.

See also

DataFrame.query
Evaluates a boolean expression to query the columns of a frame.
DataFrame.assign
Can evaluate an expression or function to create new values for a column.
pandas.eval
Evaluate a Python expression as a string using various backends.

Notes

For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval.

Examples

>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)})  # doctest: +SKIP
>>> df  # doctest: +SKIP
   A   B
0  1  10
1  2   8
2  3   6
3  4   4
4  5   2
>>> df.eval('A + B')  # doctest: +SKIP
0    11
1    10
2     9
3     8
4     7
dtype: int64

Assignment is allowed though by default the original DataFrame is not modified.

>>> df.eval('C = A + B')  # doctest: +SKIP
   A   B   C
0  1  10  11
1  2   8  10
2  3   6   9
3  4   4   8
4  5   2   7
>>> df  # doctest: +SKIP
   A   B
0  1  10
1  2   8
2  3   6
3  4   4
4  5   2

Use inplace=True to modify the original DataFrame.

>>> df.eval('C = A + B', inplace=True)  # doctest: +SKIP
>>> df  # doctest: +SKIP
   A   B   C
0  1  10  11
1  2   8  10
2  3   6   9
3  4   4   8
4  5   2   7
ffill(axis=None, limit=None)

Synonym for DataFrame.fillna(method='ffill')

fillna(value=None, method=None, limit=None, axis=None)

Fill NA/NaN values using the specified method

This docstring was copied from pandas.core.frame.DataFrame.fillna.

Some inconsistencies with the Dask version may exist.

Parameters:
value : scalar, dict, Series, or DataFrame

Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

axis : {0 or ‘index’, 1 or ‘columns’}
inplace : boolean, default False (Not supported in Dask)

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

downcast : dict, default is None (Not supported in Dask)

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns:
filled : DataFrame

See also

interpolate
Fill NaN values using interpolation.

reindex, asfreq

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],  # doctest: +SKIP
...                    [3, 4, np.nan, 1],
...                    [np.nan, np.nan, np.nan, 5],
...                    [np.nan, 3, np.nan, 4]],
...                    columns=list('ABCD'))
>>> df  # doctest: +SKIP
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

Replace all NaN elements with 0s.

>>> df.fillna(0)  # doctest: +SKIP
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill')  # doctest: +SKIP
    A   B   C   D
0   NaN 2.0 NaN 0
1   3.0 4.0 NaN 1
2   3.0 4.0 NaN 5
3   3.0 3.0 NaN 4

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}  # doctest: +SKIP
>>> df.fillna(value=values)  # doctest: +SKIP
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 2.0 1
2   0.0 1.0 2.0 5
3   0.0 3.0 2.0 4

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1)  # doctest: +SKIP
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 NaN 1
2   NaN 1.0 NaN 5
3   NaN 3.0 NaN 4
first(offset)

Convenience method for subsetting initial periods of time series data based on a date offset.

This docstring was copied from pandas.core.frame.DataFrame.first.

Some inconsistencies with the Dask version may exist.

Parameters:
offset : string, DateOffset, dateutil.relativedelta
Returns:
subset : type of caller
Raises:
TypeError

If the index is not a DatetimeIndex

See also

last
Select final periods of time series based on a date offset
at_time
Select values at a particular time of the day
between_time
Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')  # doctest: +SKIP
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)  # doctest: +SKIP
>>> ts  # doctest: +SKIP
            A
2018-04-09  1
2018-04-11  2
2018-04-13  3
2018-04-15  4

Get the rows for the first 3 days:

>>> ts.first('3D')  # doctest: +SKIP
            A
2018-04-09  1
2018-04-11  2

Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned.

floordiv(other, axis='columns', level=None, fill_value=None)

Integer division of dataframe and other, element-wise (binary operator floordiv).

Equivalent to dataframe // other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

Notes

Mismatched indices will be unioned together

Examples

None

ge(other, axis='columns', level=None)

Wrapper for flexible comparison methods ge

get_dtype_counts()

Return counts of unique dtypes in this object.

This docstring was copied from pandas.core.frame.DataFrame.get_dtype_counts.

Some inconsistencies with the Dask version may exist.

Returns:
dtype : Series

Series with the count of columns with each dtype.

See also

dtypes
Return the dtypes in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]  # doctest: +SKIP
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])  # doctest: +SKIP
>>> df  # doctest: +SKIP
  str  int  float
0   a    1    1.0
1   b    2    2.0
2   c    3    3.0
>>> df.get_dtype_counts()  # doctest: +SKIP
float64    1
int64      1
object     1
dtype: int64
get_ftype_counts()

Return counts of unique ftypes in this object.

This docstring was copied from pandas.core.frame.DataFrame.get_ftype_counts.

Some inconsistencies with the Dask version may exist.

Deprecated since version 0.23.0.

This is useful for SparseDataFrame or for DataFrames containing sparse arrays.

Returns:
dtype : Series

Series with the count of columns with each type and sparsity (dense/sparse)

See also

ftypes
Return ftypes (indication of sparse/dense and dtype) in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]  # doctest: +SKIP
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])  # doctest: +SKIP
>>> df  # doctest: +SKIP
  str  int  float
0   a    1    1.0
1   b    2    2.0
2   c    3    3.0
>>> df.get_ftype_counts()  # doctest: +SKIP
float64:dense    1
int64:dense      1
object:dense     1
dtype: int64
get_partition(n)

Get a dask DataFrame/Series representing the nth partition.

groupby(by=None, **kwargs)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

This docstring was copied from pandas.core.frame.DataFrame.groupby.

Some inconsistencies with the Dask version may exist.

Parameters:
by : mapping, function, label, or list of labels

Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align() method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in self. Notice that a tuple is interpreted a (single) key.

axis : int, default 0 (Not supported in Dask)
level : int, level name, or sequence of such, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), group by a particular level or levels

as_index : boolean, default True (Not supported in Dask)

For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

sort : boolean, default True (Not supported in Dask)

Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

group_keys : boolean, default True (Not supported in Dask)

When calling apply, add group keys to index to identify pieces

squeeze : boolean, default False (Not supported in Dask)

reduce the dimensionality of the return type if possible, otherwise return a consistent type

observed : boolean, default False (Not supported in Dask)

This only applies if any of the groupers are Categoricals If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.

New in version 0.23.0.

Returns:
GroupBy object

See also

resample
Convenience method for frequency conversion and resampling of time series.

Notes

See the user guide for more.

Examples

DataFrame results

>>> data.groupby(func, axis=0).mean()  # doctest: +SKIP
>>> data.groupby(['col1', 'col2'])['col3'].mean()  # doctest: +SKIP

DataFrame with hierarchical index

>>> data.groupby(['col1', 'col2']).mean()  # doctest: +SKIP
gt(other, axis='columns', level=None)

Wrapper for flexible comparison methods gt

head(n=5, npartitions=1, compute=True)

First n rows of the dataset

Parameters:
n : int, optional

The number of rows to return. Default is 5.

npartitions : int, optional

Elements are only taken from the first npartitions, with a default of 1. If there are fewer than n rows in the first npartitions a warning will be raised and any found rows returned. Pass -1 to use all partitions.

compute : bool, optional

Whether to compute the result, default is True.

idxmax(axis=None, skipna=True, split_every=False)

Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmax.

Some inconsistencies with the Dask version may exist.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns:
idxmax : Series
Raises:
ValueError
  • If the row/column is empty

See also

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

idxmin(axis=None, skipna=True, split_every=False)

Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmin.

Some inconsistencies with the Dask version may exist.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns:
idxmin : Series
Raises:
ValueError
  • If the row/column is empty

See also

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

iloc

Purely integer-location based indexing for selection by position.

Only indexing the column positions is supported. Trying to select row positions will raise a ValueError.

See Indexing into Dask DataFrames for more.

Examples

>>> df.iloc[:, [2, 0, 1]]  # doctest: +SKIP
index

Return dask Index instance

info(buf=None, verbose=False, memory_usage=False)

Concise summary of a Dask DataFrame.

isin(values)

Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

This docstring was copied from pandas.core.frame.DataFrame.isin.

Some inconsistencies with the Dask version may exist.

Parameters:
values : iterable, Series, DataFrame or dictionary

The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dictionary, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match.

Returns:
DataFrame of booleans

Examples

When values is a list:

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})  # doctest: +SKIP
>>> df.isin([1, 3, 12, 'a'])  # doctest: +SKIP
       A      B
0   True   True
1  False  False
2   True  False

When values is a dict:

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})  # doctest: +SKIP
>>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})  # doctest: +SKIP
       A      B
0   True  False  # Note that B didn't match the 1 here.
1  False   True
2   True   True

When values is a Series or DataFrame:

>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})  # doctest: +SKIP
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})  # doctest: +SKIP
>>> df.isin(other)  # doctest: +SKIP
       A      B
0   True  False
1  False  False  # Column A in `other` has a 3, but not at index 1.
2   True   True
isna()

Detect missing values.

This docstring was copied from pandas.core.frame.DataFrame.isna.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).

Returns:
DataFrame

Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.

See also

DataFrame.isnull
alias of isna
DataFrame.notna
boolean inverse of isna
DataFrame.dropna
omit axes labels with missing values
isna
top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],  # doctest: +SKIP
...                    'born': [pd.NaT, pd.Timestamp('1939-05-27'),
...                             pd.Timestamp('1940-04-25')],
...                    'name': ['Alfred', 'Batman', ''],
...                    'toy': [None, 'Batmobile', 'Joker']})
>>> df  # doctest: +SKIP
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.isna()  # doctest: +SKIP
     age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.isna()  # doctest: +SKIP
0    False
1    False
2     True
dtype: bool
isnull()

Detect missing values.

This docstring was copied from pandas.core.frame.DataFrame.isnull.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).

Returns:
DataFrame

Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.

See also

DataFrame.isnull
alias of isna
DataFrame.notna
boolean inverse of isna
DataFrame.dropna
omit axes labels with missing values
isna
top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],  # doctest: +SKIP
...                    'born': [pd.NaT, pd.Timestamp('1939-05-27'),
...                             pd.Timestamp('1940-04-25')],
...                    'name': ['Alfred', 'Batman', ''],
...                    'toy': [None, 'Batmobile', 'Joker']})
>>> df  # doctest: +SKIP
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.isna()  # doctest: +SKIP
     age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.isna()  # doctest: +SKIP
0    False
1    False
2     True
dtype: bool
iterrows()

Iterate over DataFrame rows as (index, Series) pairs.

This docstring was copied from pandas.core.frame.DataFrame.iterrows.

Some inconsistencies with the Dask version may exist.

Returns:
it : generator

A generator that iterates over the rows of the frame.

See also

itertuples
Iterate over DataFrame rows as namedtuples of the values.
iteritems
Iterate over (column name, Series) pairs.

Notes

  1. Because iterrows returns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

    >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])  # doctest: +SKIP
    >>> row = next(df.iterrows())[1]  # doctest: +SKIP
    >>> row  # doctest: +SKIP
    int      1.0
    float    1.5
    Name: 0, dtype: float64
    >>> print(row['int'].dtype)  # doctest: +SKIP
    float64
    >>> print(df['int'].dtype)  # doctest: +SKIP
    int64
    

    To preserve dtypes while iterating over the rows, it is better to use itertuples() which returns namedtuples of the values and which is generally faster than iterrows.

  2. You should never modify something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect.

itertuples(index=True, name='Pandas')

Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.

This docstring was copied from pandas.core.frame.DataFrame.itertuples.

Some inconsistencies with the Dask version may exist.

Parameters:
index : boolean, default True

If True, return the index as the first element of the tuple.

name : string, default “Pandas”

The name of the returned namedtuples or None to return regular tuples.

See also

iterrows
Iterate over DataFrame rows as (index, Series) pairs.
iteritems
Iterate over (column name, Series) pairs.

Notes

The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned.

Examples

>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]},  # doctest: +SKIP
                      index=['a', 'b'])
>>> df  # doctest: +SKIP
   col1  col2
a     1   0.1
b     2   0.2
>>> for row in df.itertuples():  # doctest: +SKIP
...     print(row)
...
Pandas(Index='a', col1=1, col2=0.10000000000000001)
Pandas(Index='b', col1=2, col2=0.20000000000000001)
join(other, on=None, how='left', lsuffix='', rsuffix='', npartitions=None, shuffle=None)

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

This docstring was copied from pandas.core.frame.DataFrame.join.

Some inconsistencies with the Dask version may exist.

Parameters:
other : DataFrame, Series with name field set, or list of DataFrame

Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame

on : name, tuple/list of names, or array-like

Column or index level name(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiple values given, the other DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘left’

How to handle the operation of the two objects.

  • left: use calling frame’s index (or column if on is specified)
  • right: use other frame’s index
  • outer: form union of calling frame’s index (or column if on is specified) with other frame’s index, and sort it lexicographically
  • inner: form intersection of calling frame’s index (or column if on is specified) with other frame’s index, preserving the order of the calling’s one
lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

sort : boolean, default False (Not supported in Dask)

Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword)

Returns:
joined : DataFrame

See also

DataFrame.merge
For column(s)-on-columns(s) operations

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

Support for specifying index levels as the on parameter was added in version 0.23.0

Examples

>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],  # doctest: +SKIP
...                        'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})
>>> caller  # doctest: +SKIP
    A key
0  A0  K0
1  A1  K1
2  A2  K2
3  A3  K3
4  A4  K4
5  A5  K5
>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],  # doctest: +SKIP
...                       'B': ['B0', 'B1', 'B2']})
>>> other  # doctest: +SKIP
    B key
0  B0  K0
1  B1  K1
2  B2  K2

Join DataFrames using their indexes.

>>> caller.join(other, lsuffix='_caller', rsuffix='_other')  # doctest: +SKIP
>>>     A key_caller    B key_other  # doctest: +SKIP
    0  A0         K0   B0        K0
    1  A1         K1   B1        K1
    2  A2         K2   B2        K2
    3  A3         K3  NaN       NaN
    4  A4         K4  NaN       NaN
    5  A5         K5  NaN       NaN

If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index.

>>> caller.set_index('key').join(other.set_index('key'))  # doctest: +SKIP
>>>      A    B  # doctest: +SKIP
    key
    K0   A0   B0
    K1   A1   B1
    K2   A2   B2
    K3   A3  NaN
    K4   A4  NaN
    K5   A5  NaN

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in the caller. This method preserves the original caller’s index in the result.

>>> caller.join(other.set_index('key'), on='key')  # doctest: +SKIP
>>>     A key    B  # doctest: +SKIP
    0  A0  K0   B0
    1  A1  K1   B1
    2  A2  K2   B2
    3  A3  K3  NaN
    4  A4  K4  NaN
    5  A5  K5  NaN
known_divisions

Whether divisions are already known

last(offset)

Convenience method for subsetting final periods of time series data based on a date offset.

This docstring was copied from pandas.core.frame.DataFrame.last.

Some inconsistencies with the Dask version may exist.

Parameters:
offset : string, DateOffset, dateutil.relativedelta
Returns:
subset : type of caller
Raises:
TypeError

If the index is not a DatetimeIndex

See also

first
Select initial periods of time series based on a date offset
at_time
Select values at a particular time of the day
between_time
Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')  # doctest: +SKIP
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)  # doctest: +SKIP
>>> ts  # doctest: +SKIP
            A
2018-04-09  1
2018-04-11  2
2018-04-13  3
2018-04-15  4

Get the rows for the last 3 days:

>>> ts.last('3D')  # doctest: +SKIP
            A
2018-04-13  3
2018-04-15  4

Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned.

le(other, axis='columns', level=None)

Wrapper for flexible comparison methods le

loc

Purely label-location based indexer for selection by label.

>>> df.loc["b"]  # doctest: +SKIP
>>> df.loc["b":"d"]  # doctest: +SKIP
lt(other, axis='columns', level=None)

Wrapper for flexible comparison methods lt

map_overlap(func, before, after, *args, **kwargs)

Apply a function to each partition, sharing rows with adjacent partitions.

This can be useful for implementing windowing functions such as df.rolling(...).mean() or df.diff().

Parameters:
func : function

Function applied to each partition.

before : int

The number of rows to prepend to partition i from the end of partition i - 1.

after : int

The number of rows to append to partition i from the beginning of partition i + 1.

args, kwargs :

Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed after.

meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional

An empty pd.DataFrame or pd.Series that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a DataFrame, a dict of {name: dtype} or iterable of (name, dtype) can be provided. Instead of a series, a tuple of (name, dtype) can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing meta is recommended. For more information, see dask.dataframe.utils.make_meta.

Notes

Given positive integers before and after, and a function func, map_overlap does the following:

  1. Prepend before rows to each partition i from the end of partition i - 1. The first partition has no rows prepended.
  2. Append after rows to each partition i from the beginning of partition i + 1. The last partition has no rows appended.
  3. Apply func to each partition, passing in any extra args and kwargs if provided.
  4. Trim before rows from the beginning of all but the first partition.
  5. Trim after rows from the end of all but the last partition.

Note that the index and divisions are assumed to remain unchanged.

Examples

Given a DataFrame, Series, or Index, such as:

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 4, 7, 11],
...                    'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

A rolling sum with a trailing moving window of size 2 can be computed by overlapping 2 rows before each partition, and then mapping calls to df.rolling(2).sum():

>>> ddf.compute()
    x    y
0   1  1.0
1   2  2.0
2   4  3.0
3   7  4.0
4  11  5.0
>>> ddf.map_overlap(lambda df: df.rolling(2).sum(), 2, 0).compute()
      x    y
0   NaN  NaN
1   3.0  3.0
2   6.0  5.0
3  11.0  7.0
4  18.0  9.0

The pandas diff method computes a discrete difference shifted by a number of periods (can be positive or negative). This can be implemented by mapping calls to df.diff to each partition after prepending/appending that many rows, depending on sign:

>>> def diff(df, periods=1):
...     before, after = (periods, 0) if periods > 0 else (0, -periods)
...     return df.map_overlap(lambda df, periods=1: df.diff(periods),
...                           periods, 0, periods=periods)
>>> diff(ddf, 1).compute()
     x    y
0  NaN  NaN
1  1.0  1.0
2  2.0  1.0
3  3.0  1.0
4  4.0  1.0

If you have a DatetimeIndex, you can use a pd.Timedelta for time- based windows.

>>> ts = pd.Series(range(10), index=pd.date_range('2017', periods=10))
>>> dts = dd.from_pandas(ts, npartitions=2)
>>> dts.map_overlap(lambda df: df.rolling('2D').sum(),
...                 pd.Timedelta('2D'), 0).compute()
2017-01-01     0.0
2017-01-02     1.0
2017-01-03     3.0
2017-01-04     5.0
2017-01-05     7.0
2017-01-06     9.0
2017-01-07    11.0
2017-01-08    13.0
2017-01-09    15.0
2017-01-10    17.0
dtype: float64
map_partitions(func, *args, **kwargs)

Apply Python function on each DataFrame partition.

Note that the index and divisions are assumed to remain unchanged.

Parameters:
func : function

Function applied to each partition.

args, kwargs :

Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed after. Arguments and keywords may contain Scalar, Delayed or regular python objects. DataFrame-like args (both dask and pandas) will be repartitioned to align (if necessary) before applying the function.

meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional

An empty pd.DataFrame or pd.Series that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a DataFrame, a dict of {name: dtype} or iterable of (name, dtype) can be provided. Instead of a series, a tuple of (name, dtype) can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing meta is recommended. For more information, see dask.dataframe.utils.make_meta.

Examples

Given a DataFrame, Series, or Index, such as:

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5],
...                    'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

One can use map_partitions to apply a function on each partition. Extra arguments and keywords can optionally be provided, and will be passed to the function after the partition.

Here we apply a function with arguments and keywords to a DataFrame, resulting in a Series:

>>> def myadd(df, a, b=1):
...     return df.x + df.y + a + b
>>> res = ddf.map_partitions(myadd, 1, b=2)
>>> res.dtype
dtype('float64')

By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the meta keyword. This can be specified in many forms, for more information see dask.dataframe.utils.make_meta.

Here we specify the output is a Series with no name, and dtype float64:

>>> res = ddf.map_partitions(myadd, 1, b=2, meta=(None, 'f8'))

Here we map a function that takes in a DataFrame, and returns a DataFrame with a new column:

>>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y))
>>> res.dtypes
x      int64
y    float64
z    float64
dtype: object

As before, the output metadata can also be specified manually. This time we pass in a dict, as the output is a DataFrame:

>>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y),
...                          meta={'x': 'i8', 'y': 'f8', 'z': 'f8'})

In the case where the metadata doesn’t change, you can also pass in the object itself directly:

>>> res = ddf.map_partitions(lambda df: df.head(), meta=df)

Also note that the index and divisions are assumed to remain unchanged. If the function you’re mapping changes the index/divisions, you’ll need to clear them afterwards:

>>> ddf.map_partitions(func).clear_divisions()  # doctest: +SKIP
mask(cond, other=nan)

Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

This docstring was copied from pandas.core.frame.DataFrame.mask.

Some inconsistencies with the Dask version may exist.

Parameters:
cond : boolean NDFrame, array-like, or callable

Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False (Not supported in Dask)

Whether to perform the operation in place on the data

axis : alignment axis if needed, default None (Not supported in Dask)
level : alignment level if needed, default None (Not supported in Dask)
errors : str, {‘raise’, ‘ignore’}, default ‘raise’ (Not supported in Dask)
  • raise : allow exceptions to be raised
  • ignore : suppress exceptions. On error return original object

Note that currently this parameter won’t affect the results and will always coerce to a suitable dtype.

try_cast : boolean, default False (Not supported in Dask)

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True (Not supported in Dask)

Whether to raise on invalid data types (e.g. trying to where on strings)

Deprecated since version 0.21.0.

Returns:
wh : same type as caller

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is False the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the mask documentation in indexing.

Examples

>>> s = pd.Series(range(5))  # doctest: +SKIP
>>> s.where(s > 0)  # doctest: +SKIP
0    NaN
1    1.0
2    2.0
3    3.0
4    4.0
>>> s.mask(s > 0)  # doctest: +SKIP
0    0.0
1    NaN
2    NaN
3    NaN
4    NaN
>>> s.where(s > 1, 10)  # doctest: +SKIP
0    10.0
1    10.0
2    2.0
3    3.0
4    4.0
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])  # doctest: +SKIP
>>> m = df % 3 == 0  # doctest: +SKIP
>>> df.where(m, -df)  # doctest: +SKIP
   A  B
0  0 -1
1 -2  3
2 -4 -5
3  6 -7
4 -8  9
>>> df.where(m, -df) == np.where(m, df, -df)  # doctest: +SKIP
      A     B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
>>> df.where(m, -df) == df.mask(~m, -df)  # doctest: +SKIP
      A     B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
max(axis=None, skipna=True, split_every=False, out=None)

This docstring was copied from pandas.core.frame.DataFrame.max.

Some inconsistencies with the Dask version may exist.

This method returns the maximum of the values in the object.
If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.
Parameters:
axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None (Not supported in Dask)

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns:
max : Series or DataFrame (if level specified)
mean(axis=None, skipna=True, split_every=False, dtype=None, out=None)

This docstring was copied from pandas.core.frame.DataFrame.mean.

Some inconsistencies with the Dask version may exist.

Return the mean of the values for the requested axis

Parameters:
axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None (Not supported in Dask)

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns:
mean : Series or DataFrame (if level specified)
memory_usage(index=True, deep=False)

Return the memory usage of each column in bytes.

This docstring was copied from pandas.core.frame.DataFrame.memory_usage.

Some inconsistencies with the Dask version may exist.

The memory usage can optionally include the contribution of the index and elements of object dtype.

This value is displayed in DataFrame.info by default. This can be suppressed by setting pandas.options.display.memory_usage to False.

Parameters:
index : bool, default True

Specifies whether to include the memory usage of the DataFrame’s index in returned Series. If index=True the memory usage of the index the first item in the output.

deep : bool, default False

If True, introspect the data deeply by interrogating object dtypes for system-level memory consumption, and include it in the returned values.

Returns:
sizes : Series

A Series whose index is the original column names and whose values is the memory usage of each column in bytes.

See also

numpy.ndarray.nbytes
Total bytes consumed by the elements of an ndarray.
Series.memory_usage
Bytes consumed by a Series.
pandas.Categorical
Memory-efficient array for string values with many repeated values.
DataFrame.info
Concise summary of a DataFrame.

Examples

>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool']  # doctest: +SKIP
>>> data = dict([(t, np.ones(shape=5000).astype(t))  # doctest: +SKIP
...              for t in dtypes])
>>> df = pd.DataFrame(data)  # doctest: +SKIP
>>> df.head()  # doctest: +SKIP
   int64  float64  complex128 object  bool
0      1      1.0      (1+0j)      1  True
1      1      1.0      (1+0j)      1  True
2      1      1.0      (1+0j)      1  True
3      1      1.0      (1+0j)      1  True
4      1      1.0      (1+0j)      1  True
>>> df.memory_usage()  # doctest: +SKIP
Index            80
int64         40000
float64       40000
complex128    80000
object        40000
bool           5000
dtype: int64
>>> df.memory_usage(index=False)  # doctest: +SKIP
int64         40000
float64       40000
complex128    80000
object        40000
bool           5000
dtype: int64

The memory footprint of object dtype columns is ignored by default:

>>> df.memory_usage(deep=True)  # doctest: +SKIP
Index             80
int64          40000
float64        40000
complex128     80000
object        160000
bool            5000
dtype: int64

Use a Categorical for efficient storage of an object-dtype column with many repeated values.

>>> df['object'].astype('category').memory_usage(deep=True)  # doctest: +SKIP
5168
merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, suffixes=('_x', '_y'), indicator=False, npartitions=None, shuffle=None)

Merge the DataFrame with another DataFrame

This will merge the two datasets, either on the indices, a certain column in each dataset or the index in one dataset and the column in another.

Parameters:
right: dask.dataframe.DataFrame
how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘inner’

How to handle the operation of the two objects: - left: use calling frame’s index (or column if on is specified) - right: use other frame’s index - outer: form union of calling frame’s index (or column if on is

specified) with other frame’s index, and sort it lexicographically

  • inner: form intersection of calling frame’s index (or column if on is specified) with other frame’s index, preserving the order of the calling’s one
on : label or list

Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.

left_on : label or list, or array-like

Column to join on in the left DataFrame. Other than in pandas arrays and lists are only support if their length is 1.

right_on : label or list, or array-like

Column to join on in the right DataFrame. Other than in pandas arrays and lists are only support if their length is 1.

left_index : boolean, default False

Use the index from the left DataFrame as the join key.

right_index : boolean, default False

Use the index from the right DataFrame as the join key.

suffixes : 2-length sequence (tuple, list, …)

Suffix to apply to overlapping column names in the left and right side, respectively

indicator : boolean or string, default False

If True, adds a column to output DataFrame called “_merge” with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of “left_only” for observations whose merge key only appears in left DataFrame, “right_only” for observations whose merge key only appears in right DataFrame, and “both” if the observation’s merge key is found in both.

npartitions: int, None, or ‘auto’

The ideal number of output partitions. This is only utilised when performing a hash_join (merging on columns only). If None npartitions = max(lhs.npartitions, rhs.npartitions)

shuffle: {‘disk’, ‘tasks’}, optional

Either 'disk' for single-node operation or 'tasks' for distributed operation. Will be inferred by your current scheduler.

Notes

There are three ways to join dataframes:

  1. Joining on indices. In this case the divisions are aligned using the function dask.dataframe.multi.align_partitions. Afterwards, each partition is merged with the pandas merge function.
  2. Joining one on index and one on column. In this case the divisions of dataframe merged by index (\(d_i\)) are used to divide the column merged dataframe (\(d_c\)) one using dask.dataframe.multi.rearrange_by_divisions. In this case the merged dataframe (\(d_m\)) has the exact same divisions as (\(d_i\)). This can lead to issues if you merge multiple rows from (\(d_c\)) to one row in (\(d_i\)).
  3. Joining both on columns. In this case a hash join is performed using dask.dataframe.multi.hash_join.
min(axis=None, skipna=True, split_every=False, out=None)

This docstring was copied from pandas.core.frame.DataFrame.min.

Some inconsistencies with the Dask version may exist.

This method returns the minimum of the values in the object.
If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.
Parameters:
axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None (Not supported in Dask)

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns:
min : Series or DataFrame (if level specified)
mod(other, axis='columns', level=None, fill_value=None)

Modulo of dataframe and other, element-wise (binary operator mod).

Equivalent to dataframe % other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.rmod

Notes

Mismatched indices will be unioned together

Examples

None

mul(other, axis='columns', level=None, fill_value=None)

Multiplication of dataframe and other, element-wise (binary operator mul).

Equivalent to dataframe * other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.rmul

Notes

Mismatched indices will be unioned together

Examples

None

ndim

Return dimensionality

ne(other, axis='columns', level=None)

Wrapper for flexible comparison methods ne

nlargest(n=5, columns=None, split_every=None)

Return the first n rows ordered by columns in descending order.

This docstring was copied from pandas.core.frame.DataFrame.nlargest.

Some inconsistencies with the Dask version may exist.

Return the first n rows with the largest values in columns, in descending order. The columns that are not specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=False).head(n), but more performant.

Parameters:
n : int

Number of rows to return.

columns : label or list of labels

Column label(s) to order by.

keep : {‘first’, ‘last’}, default ‘first’ (Not supported in Dask)

Where there are duplicate values:

  • first : prioritize the first occurrence(s)
  • last : prioritize the last occurrence(s)
Returns:
DataFrame

The first n rows ordered by the given columns in descending order.

See also

DataFrame.nsmallest
Return the first n rows ordered by columns in ascending order.
DataFrame.sort_values
Sort DataFrame by the values
DataFrame.head
Return the first n rows without re-ordering.

Notes

This function cannot be used with all column types. For example, when specifying columns with object or category dtypes, TypeError is raised.

Examples

>>> df = pd.DataFrame({'a': [1, 10, 8, 10, -1],  # doctest: +SKIP
...                    'b': list('abdce'),
...                    'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
>>> df  # doctest: +SKIP
    a  b    c
0   1  a  1.0
1  10  b  2.0
2   8  d  NaN
3  10  c  3.0
4  -1  e  4.0

In the following example, we will use nlargest to select the three rows having the largest values in column “a”.

>>> df.nlargest(3, 'a')  # doctest: +SKIP
    a  b    c
1  10  b  2.0
3  10  c  3.0
2   8  d  NaN

When using keep='last', ties are resolved in reverse order:

>>> df.nlargest(3, 'a', keep='last')  # doctest: +SKIP
    a  b    c
3  10  c  3.0
1  10  b  2.0
2   8  d  NaN

To order by the largest values in column “a” and then “c”, we can specify multiple columns like in the next example.

>>> df.nlargest(3, ['a', 'c'])  # doctest: +SKIP
    a  b    c
3  10  c  3.0
1  10  b  2.0
2   8  d  NaN

Attempting to use nlargest on non-numeric dtypes will raise a TypeError:

>>> df.nlargest(3, 'b')  # doctest: +SKIP
Traceback (most recent call last):
TypeError: Column 'b' has dtype object, cannot use method 'nlargest'
notnull()

Detect existing (non-missing) values.

This docstring was copied from pandas.core.frame.DataFrame.notnull.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.

Returns:
DataFrame

Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.

See also

DataFrame.notnull
alias of notna
DataFrame.isna
boolean inverse of notna
DataFrame.dropna
omit axes labels with missing values
notna
top-level notna

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],  # doctest: +SKIP
...                    'born': [pd.NaT, pd.Timestamp('1939-05-27'),
...                             pd.Timestamp('1940-04-25')],
...                    'name': ['Alfred', 'Batman', ''],
...                    'toy': [None, 'Batmobile', 'Joker']})
>>> df  # doctest: +SKIP
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.notna()  # doctest: +SKIP
     age   born  name    toy
0   True  False  True  False
1   True   True  True   True
2  False   True  True   True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN])  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.notna()  # doctest: +SKIP
0     True
1     True
2    False
dtype: bool
npartitions

Return number of partitions

nsmallest(n=5, columns=None, split_every=None)

Get the rows of a DataFrame sorted by the n smallest values of columns.

This docstring was copied from pandas.core.frame.DataFrame.nsmallest.

Some inconsistencies with the Dask version may exist.

Parameters:
n : int

Number of items to retrieve

columns : list or str

Column name or names to order by

keep : {‘first’, ‘last’}, default ‘first’ (Not supported in Dask)

Where there are duplicate values: - first : take the first occurrence. - last : take the last occurrence.

Returns:
DataFrame

Examples

>>> df = pd.DataFrame({'a': [1, 10, 8, 11, -1],  # doctest: +SKIP
...                    'b': list('abdce'),
...                    'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
>>> df.nsmallest(3, 'a')  # doctest: +SKIP
   a  b   c
4 -1  e   4
0  1  a   1
2  8  d NaN
nunique_approx(split_every=None)

Approximate number of unique rows.

This method uses the HyperLogLog algorithm for cardinality estimation to compute the approximate number of unique rows. The approximate error is 0.406%.

Parameters:
split_every : int, optional

Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used. Default is 8.

Returns:
a float representing the approximate number of elements
partitions

Slice dataframe by partitions

This allows partitionwise slicing of a Dask Dataframe. You can perform normal Numpy-style slicing but now rather than slice elements of the array you slice along partitions so, for example, df.partitions[:5] produces a new Dask Dataframe of the first five partitions.

Returns:
A Dask DataFrame

Examples

>>> df.partitions[0]  # doctest: +SKIP
>>> df.partitions[:3]  # doctest: +SKIP
>>> df.partitions[::10]  # doctest: +SKIP
persist(**kwargs)

Persist this dask collection into memory

This turns a lazy Dask collection into a Dask collection with the same metadata, but now with the results fully computed or actively computing in the background.

The action of function differs significantly depending on the active task scheduler. If the task scheduler supports asynchronous computing, such as is the case of the dask.distributed scheduler, then persist will return immediately and the return value’s task graph will contain Dask Future objects. However if the task scheduler only supports blocking computation then the call to persist will block and the return value’s task graph will contain concrete Python results.

This function is particularly useful when using distributed systems, because the results will be kept in distributed memory, rather than returned to the local process as with compute.

Parameters:
scheduler : string, optional

Which scheduler to use like “threads”, “synchronous” or “processes”. If not provided, the default is to check the global settings first, and then fall back to the collection defaults.

optimize_graph : bool, optional

If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging.

**kwargs

Extra keywords to forward to the scheduler function.

Returns:
New dask collections backed by in-memory data

See also

dask.base.persist

pipe(func, *args, **kwargs)

Apply func(self, *args, **kwargs)

This docstring was copied from pandas.core.frame.DataFrame.pipe.

Some inconsistencies with the Dask version may exist.

Parameters:
func : function

function to apply to the NDFrame. args, and kwargs are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the NDFrame.

args : iterable, optional

positional arguments passed into func.

kwargs : mapping, optional

a dictionary of keyword arguments passed into func.

Returns:
object : the return type of func.

Notes

Use .pipe when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing

>>> f(g(h(df), arg1=a), arg2=b, arg3=c)  # doctest: +SKIP

You can write

>>> (df.pipe(h)  # doctest: +SKIP
...    .pipe(g, arg1=a)
...    .pipe(f, arg2=b, arg3=c)
... )

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose f takes its data as arg2:

>>> (df.pipe(h)  # doctest: +SKIP
...    .pipe(g, arg1=a)
...    .pipe((f, 'arg2'), arg1=a, arg3=c)
...  )
pivot_table(index=None, columns=None, values=None, aggfunc='mean')

Create a spreadsheet-style pivot table as a DataFrame. Target columns must have category dtype to infer result’s columns. index, columns, values and aggfunc must be all scalar.

Parameters:
values : scalar

column to aggregate

index : scalar

column to be index

columns : scalar

column to be columns

aggfunc : {‘mean’, ‘sum’, ‘count’}, default ‘mean’
Returns:
table : DataFrame
pow(other, axis='columns', level=None, fill_value=None)

Exponential power of dataframe and other, element-wise (binary operator pow).

Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.rpow

Notes

Mismatched indices will be unioned together

Examples

None

prod(axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None)

This docstring was copied from pandas.core.frame.DataFrame.prod.

Some inconsistencies with the Dask version may exist.

Return the product of the values for the requested axis

Parameters:
axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None (Not supported in Dask)

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns:
prod : Series or DataFrame (if level specified)

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([]).prod()  # doctest: +SKIP
1.0

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1)  # doctest: +SKIP
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod()  # doctest: +SKIP
1.0
>>> pd.Series([np.nan]).prod(min_count=1)  # doctest: +SKIP
nan
quantile(q=0.5, axis=0, method='default')

Approximate row-wise and precise column-wise quantiles of DataFrame

Parameters:
q : list/array of floats, default 0.5 (50%)

Iterable of numbers ranging from 0 to 1 for the desired quantiles

axis : {0, 1, ‘index’, ‘columns’} (default 0)

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

method : {‘default’, ‘tdigest’, ‘dask’}, optional

What method to use. By default will use dask’s internal custom algorithm ('dask'). If set to 'tdigest' will use tdigest for floats and ints and fallback to the 'dask' otherwise.

query(expr, **kwargs)

Filter dataframe with complex expression

Blocked version of pd.DataFrame.query

This is like the sequential version except that this will also happen in many threads. This may conflict with numexpr which will use multiple threads itself. We recommend that you set numexpr to use a single thread

import numexpr numexpr.set_nthreads(1)
radd(other, axis='columns', level=None, fill_value=None)

Addition of dataframe and other, element-wise (binary operator radd).

Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.add

Notes

Mismatched indices will be unioned together

Examples

>>> a = pd.DataFrame([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],  # doctest: +SKIP
...                  columns=['one'])
>>> a  # doctest: +SKIP
   one
a  1.0
b  1.0
c  1.0
d  NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],  # doctest: +SKIP
...                       two=[np.nan, 2, np.nan, 2]),
...                  index=['a', 'b', 'd', 'e'])
>>> b  # doctest: +SKIP
   one  two
a  1.0  NaN
b  NaN  2.0
d  1.0  NaN
e  NaN  2.0
>>> a.add(b, fill_value=0)  # doctest: +SKIP
   one  two
a  2.0  NaN
b  1.0  2.0
c  1.0  NaN
d  1.0  NaN
e  NaN  2.0
random_split(frac, random_state=None)

Pseudorandomly split dataframe into different pieces row-wise

Parameters:
frac : list

List of floats that should sum to one.

random_state: int or np.random.RandomState

If int create a new RandomState with this as the seed

Otherwise draw from the passed RandomState

See also

dask.DataFrame.sample

Examples

50/50 split

>>> a, b = df.random_split([0.5, 0.5])  # doctest: +SKIP

80/10/10 split, consistent random_state

>>> a, b, c = df.random_split([0.8, 0.1, 0.1], random_state=123)  # doctest: +SKIP
rdiv(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

Notes

Mismatched indices will be unioned together

Examples

None

reduction(chunk, aggregate=None, combine=None, meta='__no_default__', token=None, split_every=None, chunk_kwargs=None, aggregate_kwargs=None, combine_kwargs=None, **kwargs)

Generic row-wise reductions.

Parameters:
chunk : callable

Function to operate on each partition. Should return a pandas.DataFrame, pandas.Series, or a scalar.

aggregate : callable, optional

Function to operate on the concatenated result of chunk. If not specified, defaults to chunk. Used to do the final aggregation in a tree reduction.

The input to aggregate depends on the output of chunk. If the output of chunk is a:

  • scalar: Input is a Series, with one row per partition.
  • Series: Input is a DataFrame, with one row per partition. Columns are the rows in the output series.
  • DataFrame: Input is a DataFrame, with one row per partition. Columns are the columns in the output dataframes.

Should return a pandas.DataFrame, pandas.Series, or a scalar.

combine : callable, optional

Function to operate on intermediate concatenated results of chunk in a tree-reduction. If not provided, defaults to aggregate. The input/output requirements should match that of aggregate described above.

meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional

An empty pd.DataFrame or pd.Series that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a DataFrame, a dict of {name: dtype} or iterable of (name, dtype) can be provided. Instead of a series, a tuple of (name, dtype) can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing meta is recommended. For more information, see dask.dataframe.utils.make_meta.

token : str, optional

The name to use for the output keys.

split_every : int, optional

Group partitions into groups of this size while performing a tree-reduction. If set to False, no tree-reduction will be used, and all intermediates will be concatenated and passed to aggregate. Default is 8.

chunk_kwargs : dict, optional

Keyword arguments to pass on to chunk only.

aggregate_kwargs : dict, optional

Keyword arguments to pass on to aggregate only.

combine_kwargs : dict, optional

Keyword arguments to pass on to combine only.

kwargs :

All remaining keywords will be passed to chunk, combine, and aggregate.

Examples

>>> import pandas as pd
>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': range(50), 'y': range(50, 100)})
>>> ddf = dd.from_pandas(df, npartitions=4)

Count the number of rows in a DataFrame. To do this, count the number of rows in each partition, then sum the results:

>>> res = ddf.reduction(lambda x: x.count(),
...                     aggregate=lambda x: x.sum())
>>> res.compute()
x    50
y    50
dtype: int64

Count the number of rows in a Series with elements greater than or equal to a value (provided via a keyword).

>>> def count_greater(x, value=0):
...     return (x >= value).sum()
>>> res = ddf.x.reduction(count_greater, aggregate=lambda x: x.sum(),
...                       chunk_kwargs={'value': 25})
>>> res.compute()
25

Aggregate both the sum and count of a Series at the same time:

>>> def sum_and_count(x):
...     return pd.Series({'count': x.count(), 'sum': x.sum()},
...                      index=['count', 'sum'])
>>> res = ddf.x.reduction(sum_and_count, aggregate=lambda x: x.sum())
>>> res.compute()
count      50
sum      1225
dtype: int64

Doing the same, but for a DataFrame. Here chunk returns a DataFrame, meaning the input to aggregate is a DataFrame with an index with non-unique entries for both ‘x’ and ‘y’. We groupby the index, and sum each group to get the final result.

>>> def sum_and_count(x):
...     return pd.DataFrame({'count': x.count(), 'sum': x.sum()},
...                         columns=['count', 'sum'])
>>> res = ddf.reduction(sum_and_count,
...                     aggregate=lambda x: x.groupby(level=0).sum())
>>> res.compute()
   count   sum
x     50  1225
y     50  3725
rename(index=None, columns=None)

Alter axes labels.

This docstring was copied from pandas.core.frame.DataFrame.rename.

Some inconsistencies with the Dask version may exist.

Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.

See the user guide for more.

Parameters:
mapper, index, columns : dict-like or function, optional

dict-like or functions transformations to apply to that axis’ values. Use either mapper and axis to specify the axis to target with mapper, or index and columns.

axis : int or str, optional (Not supported in Dask)

Axis to target with mapper. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.

copy : boolean, default True (Not supported in Dask)

Also copy underlying data

inplace : boolean, default False (Not supported in Dask)

Whether to return a new DataFrame. If True then value of copy is ignored.

level : int or level name, default None (Not supported in Dask)

In case of a MultiIndex, only rename labels in the specified level.

Returns:
renamed : DataFrame

Examples

DataFrame.rename supports two calling conventions

  • (index=index_mapper, columns=columns_mapper, ...)
  • (mapper, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})  # doctest: +SKIP
>>> df.rename(index=str, columns={"A": "a", "B": "c"})  # doctest: +SKIP
   a  c
0  1  4
1  2  5
2  3  6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})  # doctest: +SKIP
   a  B
0  1  4
1  2  5
2  3  6

Using axis-style parameters

>>> df.rename(str.lower, axis='columns')  # doctest: +SKIP
   a  b
0  1  4
1  2  5
2  3  6
>>> df.rename({1: 2, 2: 4}, axis='index')  # doctest: +SKIP
   A  B
0  1  4
2  2  5
4  3  6
repartition(divisions=None, npartitions=None, freq=None, force=False)

Repartition dataframe along new divisions

Parameters:
divisions : list, optional

List of partitions to be used. If specified npartitions will be ignored.

npartitions : int, optional

Number of partitions of output. Only used if divisions isn’t specified.

freq : str, pd.Timedelta

A period on which to partition timeseries data like '7D' or '12h' or pd.Timedelta(hours=12). Assumes a datetime index.

force : bool, default False

Allows the expansion of the existing divisions. If False then the new divisions lower and upper bounds must be the same as the old divisions.

Examples

>>> df = df.repartition(npartitions=10)  # doctest: +SKIP
>>> df = df.repartition(divisions=[0, 5, 10, 20])  # doctest: +SKIP
>>> df = df.repartition(freq='7d')  # doctest: +SKIP
replace(to_replace=None, value=None, regex=False)

Replace values given in to_replace with value.

This docstring was copied from pandas.core.frame.DataFrame.replace.

Some inconsistencies with the Dask version may exist.

Values of the DataFrame are replaced with other values dynamically. This differs from updating with .loc or .iloc, which require you to specify a location to update with some value.

Parameters:
to_replace : str, regex, list, dict, Series, int, float, or None

How to find the values that will be replaced.

  • numeric, str or regex:

    • numeric: numeric values equal to to_replace will be replaced with value
    • str: string exactly matching to_replace will be replaced with value
    • regex: regexs matching to_replace will be replaced with value
  • list of str, regex, or numeric:

    • First, if to_replace and value are both lists, they must be the same length.
    • Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
    • str, regex and numeric rules apply as above.
  • dict:

    • Dicts can be used to specify different replacement values for different existing values. For example, {'a': 'b', 'y': 'z'} replaces the value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way the value parameter should be None.
    • For a DataFrame a dict can specify that different values should be replaced in different columns. For example, {'a': 1, 'b': 'z'} looks for the value 1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with whatever is specified in value. The value parameter should not be None in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
    • For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The value parameter should be None to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
  • None:

    • This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to replace any values matching to_replace with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False (Not supported in Dask)

If True, in place. Note: this will modify any other views on this object (e.g. a column from a DataFrame). Returns the caller if this is True.

limit : int, default None (Not supported in Dask)

Maximum size gap to forward or backward fill.

regex : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case to_replace must be None.

method : {‘pad’, ‘ffill’, ‘bfill’, None} (Not supported in Dask)

The method to use when for replacement, when to_replace is a scalar, list or tuple and value is None.

Changed in version 0.23.0: Added to DataFrame.

Returns:
DataFrame

Object after replacement.

Raises:
AssertionError
  • If regex is not a bool and to_replace is not None.
TypeError
  • If to_replace is a dict and value is not a list, dict, ndarray, or Series
  • If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series.
  • When replacing multiple bool or datetime64 objects and the arguments to to_replace does not match the type of the value being replaced
ValueError
  • If a list or an ndarray is passed to to_replace and value but they are not the same length.

See also

DataFrame.fillna
Fill NA values
DataFrame.where
Replace values based on boolean condition
Series.str.replace
Simple string replacement.

Notes

  • Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same.
  • Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
  • This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.
  • When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter.

Examples

Scalar `to_replace` and `value`

>>> s = pd.Series([0, 1, 2, 3, 4])  # doctest: +SKIP
>>> s.replace(0, 5)  # doctest: +SKIP
0    5
1    1
2    2
3    3
4    4
dtype: int64
>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4],  # doctest: +SKIP
...                    'B': [5, 6, 7, 8, 9],
...                    'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5)  # doctest: +SKIP
   A  B  C
0  5  5  a
1  1  6  b
2  2  7  c
3  3  8  d
4  4  9  e

List-like `to_replace`

>>> df.replace([0, 1, 2, 3], 4)  # doctest: +SKIP
   A  B  C
0  4  5  a
1  4  6  b
2  4  7  c
3  4  8  d
4  4  9  e
>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1])  # doctest: +SKIP
   A  B  C
0  4  5  a
1  3  6  b
2  2  7  c
3  1  8  d
4  4  9  e
>>> s.replace([1, 2], method='bfill')  # doctest: +SKIP
0    0
1    3
2    3
3    3
4    4
dtype: int64

dict-like `to_replace`

>>> df.replace({0: 10, 1: 100})  # doctest: +SKIP
     A  B  C
0   10  5  a
1  100  6  b
2    2  7  c
3    3  8  d
4    4  9  e
>>> df.replace({'A': 0, 'B': 5}, 100)  # doctest: +SKIP
     A    B  C
0  100  100  a
1    1    6  b
2    2    7  c
3    3    8  d
4    4    9  e
>>> df.replace({'A': {0: 100, 4: 400}})  # doctest: +SKIP
     A  B  C
0  100  5  a
1    1  6  b
2    2  7  c
3    3  8  d
4  400  9  e

Regular expression `to_replace`

>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'],  # doctest: +SKIP
...                    'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True)  # doctest: +SKIP
      A    B
0   new  abc
1   foo  new
2  bait  xyz
>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True)  # doctest: +SKIP
      A    B
0   new  abc
1   foo  bar
2  bait  xyz
>>> df.replace(regex=r'^ba.$', value='new')  # doctest: +SKIP
      A    B
0   new  abc
1   foo  new
2  bait  xyz
>>> df.replace(regex={r'^ba.$':'new', 'foo':'xyz'})  # doctest: +SKIP
      A    B
0   new  abc
1   xyz  new
2  bait  xyz
>>> df.replace(regex=[r'^ba.$', 'foo'], value='new')  # doctest: +SKIP
      A    B
0   new  abc
1   new  new
2  bait  xyz

Note that when replacing multiple bool or datetime64 objects, the data types in the to_replace parameter must match the data type of the value being replaced:

>>> df = pd.DataFrame({'A': [True, False, True],  # doctest: +SKIP
...                    'B': [False, True, False]})
>>> df.replace({'a string': 'new value', True: False})  # raises  # doctest: +SKIP
Traceback (most recent call last):
    ...
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

This raises a TypeError because one of the dict keys is not of the correct type for replacement.

Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to understand the pecularities of the to_replace parameter:

>>> s = pd.Series([10, 'a', 'a', 'b', 'a'])  # doctest: +SKIP

When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a': None}, value=None, method=None):

>>> s.replace({'a': None})  # doctest: +SKIP
0      10
1    None
2    None
3       b
4    None
dtype: object

When value=None and to_replace is a scalar, list or tuple, replace uses the method parameter (default ‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2 and ‘b’ in row 4 in this case. The command s.replace('a', None) is actually equivalent to s.replace(to_replace='a', value=None, method='pad'):

>>> s.replace('a', None)  # doctest: +SKIP
0    10
1    10
2    10
3     b
4     b
dtype: object
resample(rule, closed=None, label=None)

Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword.

This docstring was copied from pandas.core.frame.DataFrame.resample.

Some inconsistencies with the Dask version may exist.

Parameters:
rule : string

the offset string or object representing target conversion

axis : int, optional, default 0 (Not supported in Dask)
closed : {‘right’, ‘left’}

Which side of bin interval is closed. The default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’.

label : {‘right’, ‘left’}

Which bin edge label to label bucket with. The default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’ which all have a default of ‘right’.

convention : {‘start’, ‘end’, ‘s’, ‘e’} (Not supported in Dask)

For PeriodIndex only, controls whether to use the start or end of rule

kind: {‘timestamp’, ‘period’}, optional (Not supported in Dask)

Pass ‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘period’ to convert it to a PeriodIndex. By default the input representation is retained.

loffset : timedelta (Not supported in Dask)

Adjust the resampled time labels

base : int, default 0 (Not supported in Dask)

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

on : string, optional (Not supported in Dask)

For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.

New in version 0.19.0.

level : string or int, optional (Not supported in Dask)

For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like.

New in version 0.19.0.

Returns:
Resampler object

See also

groupby
Group by mapping, function, label, or list of labels.

Notes

See the user guide for more.

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')  # doctest: +SKIP
>>> series = pd.Series(range(9), index=index)  # doctest: +SKIP
>>> series  # doctest: +SKIP
2000-01-01 00:00:00    0
2000-01-01 00:01:00    1
2000-01-01 00:02:00    2
2000-01-01 00:03:00    3
2000-01-01 00:04:00    4
2000-01-01 00:05:00    5
2000-01-01 00:06:00    6
2000-01-01 00:07:00    7
2000-01-01 00:08:00    8
Freq: T, dtype: int64

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

>>> series.resample('3T').sum()  # doctest: +SKIP
2000-01-01 00:00:00     3
2000-01-01 00:03:00    12
2000-01-01 00:06:00    21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the summed value in the resampled bucket with the label 2000-01-01 00:03:00 does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

>>> series.resample('3T', label='right').sum()  # doctest: +SKIP
2000-01-01 00:03:00     3
2000-01-01 00:06:00    12
2000-01-01 00:09:00    21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

>>> series.resample('3T', label='right', closed='right').sum()  # doctest: +SKIP
2000-01-01 00:00:00     0
2000-01-01 00:03:00     6
2000-01-01 00:06:00    15
2000-01-01 00:09:00    15
Freq: 3T, dtype: int64

Upsample the series into 30 second bins.

>>> series.resample('30S').asfreq()[0:5] #select first 5 rows  # doctest: +SKIP
2000-01-01 00:00:00   0.0
2000-01-01 00:00:30   NaN
2000-01-01 00:01:00   1.0
2000-01-01 00:01:30   NaN
2000-01-01 00:02:00   2.0
Freq: 30S, dtype: float64

Upsample the series into 30 second bins and fill the NaN values using the pad method.

>>> series.resample('30S').pad()[0:5]  # doctest: +SKIP
2000-01-01 00:00:00    0
2000-01-01 00:00:30    0
2000-01-01 00:01:00    1
2000-01-01 00:01:30    1
2000-01-01 00:02:00    2
Freq: 30S, dtype: int64

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

>>> series.resample('30S').bfill()[0:5]  # doctest: +SKIP
2000-01-01 00:00:00    0
2000-01-01 00:00:30    1
2000-01-01 00:01:00    1
2000-01-01 00:01:30    2
2000-01-01 00:02:00    2
Freq: 30S, dtype: int64

Pass a custom function via apply

>>> def custom_resampler(array_like):  # doctest: +SKIP
...     return np.sum(array_like)+5
>>> series.resample('3T').apply(custom_resampler)  # doctest: +SKIP
2000-01-01 00:00:00     8
2000-01-01 00:03:00    17
2000-01-01 00:06:00    26
Freq: 3T, dtype: int64

For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or end of rule.

>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',  # doctest: +SKIP
                                                freq='A',
                                                periods=2))
>>> s  # doctest: +SKIP
2012    1
2013    2
Freq: A-DEC, dtype: int64

Resample by month using ‘start’ convention. Values are assigned to the first month of the period.

>>> s.resample('M', convention='start').asfreq().head()  # doctest: +SKIP
2012-01    1.0
2012-02    NaN
2012-03    NaN
2012-04    NaN
2012-05    NaN
Freq: M, dtype: float64

Resample by month using ‘end’ convention. Values are assigned to the last month of the period.

>>> s.resample('M', convention='end').asfreq()  # doctest: +SKIP
2012-12    1.0
2013-01    NaN
2013-02    NaN
2013-03    NaN
2013-04    NaN
2013-05    NaN
2013-06    NaN
2013-07    NaN
2013-08    NaN
2013-09    NaN
2013-10    NaN
2013-11    NaN
2013-12    2.0
Freq: M, dtype: float64

For DataFrame objects, the keyword on can be used to specify the column instead of the index for resampling.

>>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')  # doctest: +SKIP
>>> df.resample('3T', on='time').sum()  # doctest: +SKIP
                     a  b  c  d
time
2000-01-01 00:00:00  0  3  6  9
2000-01-01 00:03:00  0  3  6  9
2000-01-01 00:06:00  0  3  6  9

For a DataFrame with MultiIndex, the keyword level can be used to specify on level the resampling needs to take place.

>>> time = pd.date_range('1/1/2000', periods=5, freq='T')  # doctest: +SKIP
>>> df2 = pd.DataFrame(data=10*[range(4)],  # doctest: +SKIP
                       columns=['a', 'b', 'c', 'd'],
                       index=pd.MultiIndex.from_product([time, [1, 2]])
                       )
>>> df2.resample('3T', level=0).sum()  # doctest: +SKIP
                     a  b   c   d
2000-01-01 00:00:00  0  6  12  18
2000-01-01 00:03:00  0  4   8  12
reset_index(drop=False)

Reset the index to the default index.

Note that unlike in pandas, the reset dask.dataframe index will not be monotonically increasing from 0. Instead, it will restart at 0 for each partition (e.g. index1 = [0, ..., 10], index2 = [0, ...]). This is due to the inability to statically know the full length of the index.

For DataFrame with multi-level index, returns a new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used.

Parameters:
drop : boolean, default False

Do not try to insert index into dataframe columns.

rfloordiv(other, axis='columns', level=None, fill_value=None)

Integer division of dataframe and other, element-wise (binary operator rfloordiv).

Equivalent to other // dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

Notes

Mismatched indices will be unioned together

Examples

None

rmod(other, axis='columns', level=None, fill_value=None)

Modulo of dataframe and other, element-wise (binary operator rmod).

Equivalent to other % dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.mod

Notes

Mismatched indices will be unioned together

Examples

None

rmul(other, axis='columns', level=None, fill_value=None)

Multiplication of dataframe and other, element-wise (binary operator rmul).

Equivalent to other * dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.mul

Notes

Mismatched indices will be unioned together

Examples

None

rolling(window, min_periods=None, freq=None, center=False, win_type=None, axis=0)

Provides rolling transformations.

Parameters:
window : int, str, offset

Size of the moving window. This is the number of observations used for calculating the statistic. When not using a DatetimeIndex, the window size must not be so large as to span more than one adjacent partition. If using an offset or offset alias like ‘5D’, the data must have a DatetimeIndex

Changed in version 0.15.0: Now accepts offsets and string offset aliases

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

center : boolean, default False

Set the labels at the center of the window.

win_type : string, default None

Provide a window type. The recognized window types are identical to pandas.

axis : int, default 0
Returns:
a Rolling object on which to call a method to compute a statistic

Notes

The freq argument is not supported.

round(decimals=0)

Round a DataFrame to a variable number of decimal places.

This docstring was copied from pandas.core.frame.DataFrame.round.

Some inconsistencies with the Dask version may exist.

Parameters:
decimals : int, dict, Series

Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if decimals is a dict-like, or in the index if decimals is a Series. Any columns not included in decimals will be left as is. Elements of decimals which are not columns of the input will be ignored.

Returns:
DataFrame object

Examples

>>> df = pd.DataFrame(np.random.random([3, 3]),  # doctest: +SKIP
...     columns=['A', 'B', 'C'], index=['first', 'second', 'third'])
>>> df  # doctest: +SKIP
               A         B         C
first   0.028208  0.992815  0.173891
second  0.038683  0.645646  0.577595
third   0.877076  0.149370  0.491027
>>> df.round(2)  # doctest: +SKIP
           A     B     C
first   0.03  0.99  0.17
second  0.04  0.65  0.58
third   0.88  0.15  0.49
>>> df.round({'A': 1, 'C': 2})  # doctest: +SKIP
          A         B     C
first   0.0  0.992815  0.17
second  0.0  0.645646  0.58
third   0.9  0.149370  0.49
>>> decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C'])  # doctest: +SKIP
>>> df.round(decimals)  # doctest: +SKIP
          A  B     C
first   0.0  1  0.17
second  0.0  1  0.58
third   0.9  0  0.49
rpow(other, axis='columns', level=None, fill_value=None)

Exponential power of dataframe and other, element-wise (binary operator rpow).

Equivalent to other ** dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.pow

Notes

Mismatched indices will be unioned together

Examples

None

rsub(other, axis='columns', level=None, fill_value=None)

Subtraction of dataframe and other, element-wise (binary operator rsub).

Equivalent to other - dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.sub

Notes

Mismatched indices will be unioned together

Examples

>>> a = pd.DataFrame([2, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],  # doctest: +SKIP
...                  columns=['one'])
>>> a  # doctest: +SKIP
   one
a  2.0
b  1.0
c  1.0
d  NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],  # doctest: +SKIP
...                       two=[3, 2, np.nan, 2]),
...                  index=['a', 'b', 'd', 'e'])
>>> b  # doctest: +SKIP
   one  two
a  1.0  3.0
b  NaN  2.0
d  1.0  NaN
e  NaN  2.0
>>> a.sub(b, fill_value=0)  # doctest: +SKIP
   one  two
a  1.0  -3.0
b  1.0  -2.0
c  1.0  NaN
d  -1.0  NaN
e  NaN  -2.0
rtruediv(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

Notes

Mismatched indices will be unioned together

Examples

None

sample(n=None, frac=None, replace=False, random_state=None)

Random sample of items

Parameters:
n : int, optional

Number of items to return is not supported by dask. Use frac instead.

frac : float, optional

Fraction of axis items to return.

replace : boolean, optional

Sample with or without replacement. Default = False.

random_state : int or np.random.RandomState

If int we create a new RandomState with this as the seed Otherwise we draw from the passed RandomState

select_dtypes(include=None, exclude=None)

Return a subset of the DataFrame’s columns based on the column dtypes.

This docstring was copied from pandas.core.frame.DataFrame.select_dtypes.

Some inconsistencies with the Dask version may exist.

Parameters:
include, exclude : scalar or list-like

A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied.

Returns:
subset : DataFrame

The subset of the frame including the dtypes in include and excluding the dtypes in exclude.

Raises:
ValueError
  • If both of include and exclude are empty
  • If include and exclude have overlapping elements
  • If any kind of string dtype is passed in.

Notes

  • To select all numeric types, use np.number or 'number'
  • To select strings you must use the object dtype, but note that this will return all object dtype columns
  • See the numpy dtype hierarchy
  • To select datetimes, use np.datetime64, 'datetime' or 'datetime64'
  • To select timedeltas, use np.timedelta64, 'timedelta' or 'timedelta64'
  • To select Pandas categorical dtypes, use 'category'
  • To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0) or 'datetime64[ns, tz]'

Examples

>>> df = pd.DataFrame({'a': [1, 2] * 3,  # doctest: +SKIP
...                    'b': [True, False] * 3,
...                    'c': [1.0, 2.0] * 3})
>>> df  # doctest: +SKIP
        a      b  c
0       1   True  1.0
1       2  False  2.0
2       1   True  1.0
3       2  False  2.0
4       1   True  1.0
5       2  False  2.0
>>> df.select_dtypes(include='bool')  # doctest: +SKIP
   b
0  True
1  False
2  True
3  False
4  True
5  False
>>> df.select_dtypes(include=['float64'])  # doctest: +SKIP
   c
0  1.0
1  2.0
2  1.0
3  2.0
4  1.0
5  2.0
>>> df.select_dtypes(exclude=['int'])  # doctest: +SKIP
       b    c
0   True  1.0
1  False  2.0
2   True  1.0
3  False  2.0
4   True  1.0
5  False  2.0
sem(axis=None, skipna=None, ddof=1, split_every=False)

This docstring was copied from pandas.core.frame.DataFrame.sem.

Some inconsistencies with the Dask version may exist.

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters:
axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

numeric_only : boolean, default None (Not supported in Dask)

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns:
sem : Series or DataFrame (if level specified)
set_index(other, drop=True, sorted=False, npartitions=None, divisions=None, inplace=False, **kwargs)

Set the DataFrame index (row labels) using an existing column

This realigns the dataset to be sorted by a new column. This can have a significant impact on performance, because joins, groupbys, lookups, etc. are all much faster on that column. However, this performance increase comes with a cost, sorting a parallel dataset requires expensive shuffles. Often we set_index once directly after data ingest and filtering and then perform many cheap computations off of the sorted dataset.

This function operates exactly like pandas.set_index except with different performance costs (it is much more expensive). Under normal operation this function does an initial pass over the index column to compute approximate qunatiles to serve as future divisions. It then passes over the data a second time, splitting up each input partition into several pieces and sharing those pieces to all of the output partitions now in sorted order.

In some cases we can alleviate those costs, for example if your dataset is sorted already then we can avoid making many small pieces or if you know good values to split the new index column then we can avoid the initial pass over the data. For example if your new index is a datetime index and your data is already sorted by day then this entire operation can be done for free. You can control these options with the following parameters.

Parameters:
df: Dask DataFrame
index: string or Dask Series
npartitions: int, None, or ‘auto’

The ideal number of output partitions. If None use the same as the input. If ‘auto’ then decide by memory use.

shuffle: string, optional

Either 'disk' for single-node operation or 'tasks' for distributed operation. Will be inferred by your current scheduler.

sorted: bool, optional

If the index column is already sorted in increasing order. Defaults to False

divisions: list, optional

Known values on which to separate index values of the partitions. See https://docs.dask.org/en/latest/dataframe-design.html#partitions Defaults to computing this with a single pass over the data. Note that if sorted=True, specified divisions are assumed to match the existing partitions in the data. If this is untrue, you should leave divisions empty and call repartition after set_index.

inplace : bool, optional

Modifying the DataFrame in place is not supported by Dask. Defaults to False.

compute: bool

Whether or not to trigger an immediate computation. Defaults to False.

Examples

>>> df2 = df.set_index('x')  # doctest: +SKIP
>>> df2 = df.set_index(d.x)  # doctest: +SKIP
>>> df2 = df.set_index(d.timestamp, sorted=True)  # doctest: +SKIP

A common case is when we have a datetime column that we know to be sorted and is cleanly divided by day. We can set this index for free by specifying both that the column is pre-sorted and the particular divisions along which is is separated

>>> import pandas as pd
>>> divisions = pd.date_range('2000', '2010', freq='1D')
>>> df2 = df.set_index('timestamp', sorted=True, divisions=divisions)  # doctest: +SKIP
shape

Return a tuple representing the dimensionality of the DataFrame.

The number of rows is a Delayed result. The number of columns is a concrete integer.

Examples

>>> df.size  # doctest: +SKIP
(Delayed('int-07f06075-5ecc-4d77-817e-63c69a9188a8'), 2)
shift(periods=1, freq=None, axis=0)

Shift index by desired number of periods with an optional time freq

This docstring was copied from pandas.core.frame.DataFrame.shift.

Some inconsistencies with the Dask version may exist.

Parameters:
periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, optional

Increment to use from the tseries module or time rule (e.g. ‘EOM’). See Notes.

axis : {0 or ‘index’, 1 or ‘columns’}
Returns:
shifted : DataFrame

Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

size

Size of the Series or DataFrame as a Delayed object.

Examples

>>> series.size  # doctest: +SKIP
dd.Scalar<size-ag..., dtype=int64>
squeeze(axis=None)

Squeeze length 1 dimensions.

This docstring was copied from pandas.core.frame.DataFrame.squeeze.

Some inconsistencies with the Dask version may exist.

Parameters:
axis : None, integer or string axis name, optional

The axis to squeeze if 1-sized.

New in version 0.20.0.

Returns:
scalar if 1-sized, else original object
std(axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None)

This docstring was copied from pandas.core.frame.DataFrame.std.

Some inconsistencies with the Dask version may exist.

Return sample standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters:
axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

numeric_only : boolean, default None (Not supported in Dask)

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns:
std : Series or DataFrame (if level specified)
sub(other, axis='columns', level=None, fill_value=None)

Subtraction of dataframe and other, element-wise (binary operator sub).

Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

See also

DataFrame.rsub

Notes

Mismatched indices will be unioned together

Examples

>>> a = pd.DataFrame([2, 1, 1, np.nan], index=['a', 'b', 'c', 'd'],  # doctest: +SKIP
...                  columns=['one'])
>>> a  # doctest: +SKIP
   one
a  2.0
b  1.0
c  1.0
d  NaN
>>> b = pd.DataFrame(dict(one=[1, np.nan, 1, np.nan],  # doctest: +SKIP
...                       two=[3, 2, np.nan, 2]),
...                  index=['a', 'b', 'd', 'e'])
>>> b  # doctest: +SKIP
   one  two
a  1.0  3.0
b  NaN  2.0
d  1.0  NaN
e  NaN  2.0
>>> a.sub(b, fill_value=0)  # doctest: +SKIP
   one  two
a  1.0  -3.0
b  1.0  -2.0
c  1.0  NaN
d  -1.0  NaN
e  NaN  -2.0
sum(axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None)

This docstring was copied from pandas.core.frame.DataFrame.sum.

Some inconsistencies with the Dask version may exist.

Return the sum of the values for the requested axis

Parameters:
axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values when computing the result.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None (Not supported in Dask)

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

min_count : int, default 0

The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

Returns:
sum : Series or DataFrame (if level specified)

Examples

By default, the sum of an empty or all-NA Series is 0.

>>> pd.Series([]).sum()  # min_count=0 is the default  # doctest: +SKIP
0.0

This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty series to be NaN, pass min_count=1.

>>> pd.Series([]).sum(min_count=1)  # doctest: +SKIP
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).sum()  # doctest: +SKIP
0.0
>>> pd.Series([np.nan]).sum(min_count=1)  # doctest: +SKIP
nan
tail(n=5, compute=True)

Last n rows of the dataset

Caveat, the only checks the last n rows of the last partition.

to_bag(index=False)

Create Dask Bag from a Dask DataFrame

Parameters:
index : bool, optional

If True, the elements are tuples of (index, value), otherwise they’re just the value. Default is False.

Examples

>>> bag = df.to_bag()  # doctest: +SKIP
to_csv(filename, **kwargs)

Store Dask DataFrame to CSV files

One filename per partition will be created. You can specify the filenames in a variety of ways.

Use a globstring:

>>> df.to_csv('/path/to/data/export-*.csv')  

The * will be replaced by the increasing sequence 0, 1, 2, …

/path/to/data/export-0.csv
/path/to/data/export-1.csv

Use a globstring and a name_function= keyword argument. The name_function function should expect an integer and produce a string. Strings produced by name_function must preserve the order of their respective partition indices.

>>> from datetime import date, timedelta
>>> def name(i):
...     return str(date(2015, 1, 1) + i * timedelta(days=1))
>>> name(0)
'2015-01-01'
>>> name(15)
'2015-01-16'
>>> df.to_csv('/path/to/data/export-*.csv', name_function=name)  # doctest: +SKIP
/path/to/data/export-2015-01-01.csv
/path/to/data/export-2015-01-02.csv
...

You can also provide an explicit list of paths:

>>> paths = ['/path/to/data/alice.csv', '/path/to/data/bob.csv', ...]  
>>> df.to_csv(paths) 
Parameters:
filename : string

Path glob indicating the naming scheme for the output files

name_function : callable, default None

Function accepting an integer (partition index) and producing a string to replace the asterisk in the given filename globstring. Should preserve the lexicographic order of partitions

compression : string or None

String like ‘gzip’ or ‘xz’. Must support efficient random access. Filenames with extensions corresponding to known compression algorithms (gz, bz2) will be compressed accordingly automatically

sep : character, default ‘,’

Field delimiter for the output file

na_rep : string, default ‘’

Missing data representation

float_format : string, default None

Format string for floating point numbers

columns : sequence, optional

Columns to write

header : boolean or list of string, default True

Write out column names. If a list of string is given it is assumed to be aliases for the column names

header_first_partition_only : boolean, default False

If set, only write the header row in the first output file

index : boolean, default True

Write row names (index)

index_label : string or sequence, or False, default None

Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R

nanRep : None

deprecated, use na_rep

mode : str

Python write mode, default ‘w’

encoding : string, optional

A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.

compression : string, optional

a string representing the compression to use in the output file, allowed values are ‘gzip’, ‘bz2’, ‘xz’, only used when the first argument is a filename

line_terminator : string, default ‘\n’

The newline character or character sequence to use in the output file

quoting : optional constant from csv module

defaults to csv.QUOTE_MINIMAL

quotechar : string (length 1), default ‘”’

character used to quote fields

doublequote : boolean, default True

Control quoting of quotechar inside a field

escapechar : string (length 1), default None

character used to escape sep and quotechar when appropriate

chunksize : int or None

rows to write at a time

tupleize_cols : boolean, default False

write multi_index columns as a list of tuples (if True) or new (expanded format) if False)

date_format : string, default None

Format string for datetime objects

decimal: string, default ‘.’

Character recognized as decimal separator. E.g. use ‘,’ for European data

storage_options: dict

Parameters passed on to the backend filesystem class.

Returns:
The names of the file written if they were computed right away
If not, the delayed tasks associated to the writing of the files
to_dask_array(lengths=None)

Convert a dask DataFrame to a dask array.

Parameters:
lengths : bool or Sequence of ints, optional

How to determine the chunks sizes for the output array. By default, the output array will have unknown chunk lengths along the first axis, which can cause some later operations to fail.

  • True : immediately compute the length of each partition
  • Sequence : a sequence of integers to use for the chunk sizes on the first axis. These values are not validated for correctness, beyond ensuring that the number of items matches the number of partitions.
to_delayed(optimize_graph=True)

Convert into a list of dask.delayed objects, one per partition.

Parameters:
optimize_graph : bool, optional

If True [default], the graph is optimized before converting into dask.delayed objects.

Examples

>>> partitions = df.to_delayed()  # doctest: +SKIP
to_hdf(path_or_buf, key, mode='a', append=False, **kwargs)

Store Dask Dataframe to Hierarchical Data Format (HDF) files

This is a parallel version of the Pandas function of the same name. Please see the Pandas docstring for more detailed information about shared keyword arguments.

This function differs from the Pandas version by saving the many partitions of a Dask DataFrame in parallel, either to many files, or to many datasets within the same file. You may specify this parallelism with an asterix * within the filename or datapath, and an optional name_function. The asterix will be replaced with an increasing sequence of integers starting from 0 or with the result of calling name_function on each of those integers.

This function only supports the Pandas 'table' format, not the more specialized 'fixed' format.

Parameters:
path : string

Path to a target filename. May contain a * to denote many filenames

key : string

Datapath within the files. May contain a * to denote many locations

name_function : function

A function to convert the * in the above options to a string. Should take in a number from 0 to the number of partitions and return a string. (see examples below)

compute : bool

Whether or not to execute immediately. If False then this returns a dask.Delayed value.

lock : Lock, optional

Lock to use to prevent concurrency issues. By default a threading.Lock, multiprocessing.Lock or SerializableLock will be used depending on your scheduler if a lock is required. See dask.utils.get_scheduler_lock for more information about lock selection.

scheduler : string

The scheduler to use, like “threads” or “processes”

**other:

See pandas.to_hdf for more information

Returns:
filenames : list

Returned if compute is True. List of file names that each partition is saved to.

delayed : dask.Delayed

Returned if compute is False. Delayed object to execute to_hdf when computed.

See also

read_hdf, to_parquet

Examples

Save Data to a single file

>>> df.to_hdf('output.hdf', '/data')            # doctest: +SKIP

Save data to multiple datapaths within the same file:

>>> df.to_hdf('output.hdf', '/data-*')          # doctest: +SKIP

Save data to multiple files:

>>> df.to_hdf('output-*.hdf', '/data')          # doctest: +SKIP

Save data to multiple files, using the multiprocessing scheduler:

>>> df.to_hdf('output-*.hdf', '/data', scheduler='processes') # doctest: +SKIP

Specify custom naming scheme. This writes files as ‘2000-01-01.hdf’, ‘2000-01-02.hdf’, ‘2000-01-03.hdf’, etc..

>>> from datetime import date, timedelta
>>> base = date(year=2000, month=1, day=1)
>>> def name_function(i):
...     ''' Convert integer 0 to n to a string '''
...     return base + timedelta(days=i)
>>> df.to_hdf('*.hdf', '/data', name_function=name_function) # doctest: +SKIP
to_html(max_rows=5)

Render a DataFrame as an HTML table.

This docstring was copied from pandas.core.frame.DataFrame.to_html.

Some inconsistencies with the Dask version may exist.

to_html-specific options:

bold_rows : boolean, default True (Not supported in Dask)
Make the row labels bold in the output
classes : str or list or tuple, default None (Not supported in Dask)
CSS class(es) to apply to the resulting html table
escape : boolean, default True (Not supported in Dask)
Convert the characters <, >, and & to HTML-safe sequences.
max_rows : int, optional
Maximum number of rows to show before truncating. If None, show all.
max_cols : int, optional (Not supported in Dask)
Maximum number of columns to show before truncating. If None, show all.
decimal : string, default ‘.’ (Not supported in Dask)

Character recognized as decimal separator, e.g. ‘,’ in Europe

New in version 0.18.0.

border : int (Not supported in Dask)

A border=border attribute is included in the opening <table> tag. Default pd.options.html.border.

New in version 0.19.0.

table_id : str, optional

A css id is included in the opening <table> tag if specified.

New in version 0.23.0.

Parameters:
buf : StringIO-like, optional (Not supported in Dask)

buffer to write to

columns : sequence, optional (Not supported in Dask)

the subset of columns to write; default None writes all columns

col_space : int, optional (Not supported in Dask)

the minimum width of each column

header : bool, optional (Not supported in Dask)

whether to print column labels, default True

index : bool, optional (Not supported in Dask)

whether to print index (row) labels, default True

na_rep : string, optional (Not supported in Dask)

string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional (Not supported in Dask)

formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional (Not supported in Dask)

formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

sparsify : bool, optional (Not supported in Dask)

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

index_names : bool, optional (Not supported in Dask)

Prints the names of the indexes, default True

line_width : int, optional

Width to wrap a line in characters, default no wrap

table_id : str, optional

id for the <table> element create by to_html

New in version 0.23.0.

justify : str, default None (Not supported in Dask)

How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. Valid values are

  • left
  • right
  • center
  • justify
  • justify-all
  • start
  • end
  • inherit
  • match-parent
  • initial
  • unset
Returns:
formatted : string (or unicode, depending on data and options)
to_json(filename, *args, **kwargs)

See dd.to_json docstring for more information

to_parquet(path, *args, **kwargs)

Store Dask.dataframe to Parquet files

Parameters:
df : dask.dataframe.DataFrame
path : string

Destination directory for data. Prepend with protocol like s3:// or hdfs:// for remote data.

engine : {‘auto’, ‘fastparquet’, ‘pyarrow’}, default ‘auto’

Parquet library to use. If only one library is installed, it will use that one; if both, it will use ‘fastparquet’.

compression : string or dict, optional

Either a string like "snappy" or a dictionary mapping column names to compressors like {"name": "gzip", "values": "snappy"}. The default is "default", which uses the default compression for whichever engine is selected.

write_index : boolean, optional

Whether or not to write the index. Defaults to True if divisions are known.

append : bool, optional

If False (default), construct data-set from scratch. If True, add new row-group(s) to an existing data-set. In the latter case, the data-set must exist, and the schema must match the input data.

ignore_divisions : bool, optional

If False (default) raises error when previous divisions overlap with the new appended divisions. Ignored if append=False.

partition_on : list, optional

Construct directory-based partitioning by splitting on these fields’ values. Each dask partition will result in one or more datafiles, there will be no global groupby.

storage_options : dict, optional

Key/value pairs to be passed on to the file-system backend, if any.

compute : bool, optional

If True (default) then the result is computed immediately. If False then a dask.delayed object is returned for future computation.

**kwargs

Extra options to be passed on to the specific backend.

See also

read_parquet
Read parquet data to dask.dataframe

Notes

Each partition will be written to a separate file.

Examples

>>> df = dd.read_csv(...)  # doctest: +SKIP
>>> dd.to_parquet(df, '/path/to/output/', compression='snappy')  # doctest: +SKIP
to_records(index=False)

Create Dask Array from a Dask Dataframe

Warning: This creates a dask.array without precise shape information. Operations that depend on shape information, like slicing or reshaping, will not work.

See also

dask.dataframe._Frame.values, dask.dataframe.from_dask_array

Examples

>>> df.to_records()  # doctest: +SKIP
dask.array<shape=(nan,), dtype=(numpy.record, [('ind', '<f8'), ('x', 'O'), ('y', '<i8')]), chunksize=(nan,)>
to_string(max_rows=5)

Render a DataFrame to a console-friendly tabular output.

This docstring was copied from pandas.core.frame.DataFrame.to_string.

Some inconsistencies with the Dask version may exist.

Parameters:
buf : StringIO-like, optional (Not supported in Dask)

buffer to write to

columns : sequence, optional (Not supported in Dask)

the subset of columns to write; default None writes all columns

col_space : int, optional (Not supported in Dask)

the minimum width of each column

header : bool, optional (Not supported in Dask)

Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names

index : bool, optional (Not supported in Dask)

whether to print index (row) labels, default True

na_rep : string, optional (Not supported in Dask)

string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional (Not supported in Dask)

formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional (Not supported in Dask)

formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

sparsify : bool, optional (Not supported in Dask)

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

index_names : bool, optional (Not supported in Dask)

Prints the names of the indexes, default True

line_width : int, optional (Not supported in Dask)

Width to wrap a line in characters, default no wrap

table_id : str, optional

id for the <table> element create by to_html

New in version 0.23.0.

justify : str, default None (Not supported in Dask)

How to justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box. Valid values are

  • left
  • right
  • center
  • justify
  • justify-all
  • start
  • end
  • inherit
  • match-parent
  • initial
  • unset
Returns:
formatted : string (or unicode, depending on data and options)
to_timestamp(freq=None, how='start', axis=0)

Cast to DatetimeIndex of timestamps, at beginning of period

This docstring was copied from pandas.core.frame.DataFrame.to_timestamp.

Some inconsistencies with the Dask version may exist.

Parameters:
freq : string, default frequency of PeriodIndex

Desired frequency

how : {‘s’, ‘e’, ‘start’, ‘end’}

Convention for converting period to timestamp; start of period vs. end

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The axis to convert (the index by default)

copy : boolean, default True (Not supported in Dask)

If false then underlying input data is not copied

Returns:
df : DataFrame with DatetimeIndex
truediv(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : None or float value, default None

Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing

Returns:
result : DataFrame

Notes

Mismatched indices will be unioned together

Examples

None

values

Return a dask.array of the values of this dataframe

Warning: This creates a dask.array without precise shape information. Operations that depend on shape information, like slicing or reshaping, will not work.

var(axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None)

This docstring was copied from pandas.core.frame.DataFrame.var.

Some inconsistencies with the Dask version may exist.

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters:
axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

numeric_only : boolean, default None (Not supported in Dask)

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns:
var : Series or DataFrame (if level specified)
visualize(filename='mydask', format=None, optimize_graph=False, **kwargs)

Render the computation of this object’s task graph using graphviz.

Requires graphviz to be installed.

Parameters:
filename : str or None, optional

The name (without an extension) of the file to write to disk. If filename is None, no file will be written, and we communicate with dot using only pipes.

format : {‘png’, ‘pdf’, ‘dot’, ‘svg’, ‘jpeg’, ‘jpg’}, optional

Format in which to write output file. Default is ‘png’.

optimize_graph : bool, optional

If True, the graph is optimized before rendering. Otherwise, the graph is displayed as is. Default is False.

color: {None, ‘order’}, optional

Options to color nodes. Provide cmap= keyword for additional colormap

**kwargs

Additional keyword arguments to forward to to_graphviz.

Returns:
result : IPython.diplay.Image, IPython.display.SVG, or None

See dask.dot.dot_graph for more information.

See also

dask.base.visualize, dask.dot.dot_graph

Notes

For more information on optimization see here:

https://docs.dask.org/en/latest/optimize.html

Examples

>>> x.visualize(filename='dask.pdf')  # doctest: +SKIP
>>> x.visualize(filename='dask.pdf', color='order')  # doctest: +SKIP
where(cond, other=nan)

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

This docstring was copied from pandas.core.frame.DataFrame.where.

Some inconsistencies with the Dask version may exist.

Parameters:
cond : boolean NDFrame, array-like, or callable

Where cond is True, keep the original value. Where False, replace with corresponding value from other. If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other : scalar, NDFrame, or callable

Entries where cond is False are replaced with corresponding value from other. If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace : boolean, default False (Not supported in Dask)

Whether to perform the operation in place on the data

axis : alignment axis if needed, default None (Not supported in Dask)
level : alignment level if needed, default None (Not supported in Dask)
errors : str, {‘raise’, ‘ignore’}, default ‘raise’ (Not supported in Dask)
  • raise : allow exceptions to be raised
  • ignore : suppress exceptions. On error return original object

Note that currently this parameter won’t affect the results and will always coerce to a suitable dtype.

try_cast : boolean, default False (Not supported in Dask)

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True (Not supported in Dask)

Whether to raise on invalid data types (e.g. trying to where on strings)

Deprecated since version 0.21.0.

Returns:
wh : same type as caller

See also

DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

>>> s = pd.Series(range(5))  # doctest: +SKIP
>>> s.where(s > 0)  # doctest: +SKIP
0    NaN
1    1.0
2    2.0
3    3.0
4    4.0
>>> s.mask(s > 0)  # doctest: +SKIP
0    0.0
1    NaN
2    NaN
3    NaN
4    NaN
>>> s.where(s > 1, 10)  # doctest: +SKIP
0    10.0
1    10.0
2    2.0
3    3.0
4    4.0
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])  # doctest: +SKIP
>>> m = df % 3 == 0  # doctest: +SKIP
>>> df.where(m, -df)  # doctest: +SKIP
   A  B
0  0 -1
1 -2  3
2 -4 -5
3  6 -7
4 -8  9
>>> df.where(m, -df) == np.where(m, df, -df)  # doctest: +SKIP
      A     B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
>>> df.where(m, -df) == df.mask(~m, -df)  # doctest: +SKIP
      A     B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True

Series Methods

class dask.dataframe.Series(dsk, name, meta, divisions)

Parallel Pandas Series

Do not use this class directly. Instead use functions like dd.read_csv, dd.read_parquet, or dd.from_pandas.

Parameters:
dsk: dict

The dask graph to compute this Series

_name: str

The key prefix that specifies which keys in the dask comprise this particular Series

meta: pandas.Series

An empty pandas.Series with names, dtypes, and index matching the expected output.

divisions: tuple of index values

Values along which we partition our blocks on the index

abs()

Return a Series/DataFrame with absolute numeric value of each element.

This docstring was copied from pandas.core.frame.DataFrame.abs.

Some inconsistencies with the Dask version may exist.

This function only applies to elements that are all numeric.

Returns:
abs

Series/DataFrame containing the absolute value of each element.

See also

numpy.absolute
calculate the absolute value element-wise.

Notes

For complex inputs, 1.2 + 1j, the absolute value is \(\sqrt{ a^2 + b^2 }\).

Examples

Absolute numeric values in a Series.

>>> s = pd.Series([-1.10, 2, -3.33, 4])  # doctest: +SKIP
>>> s.abs()  # doctest: +SKIP
0    1.10
1    2.00
2    3.33
3    4.00
dtype: float64

Absolute numeric values in a Series with complex numbers.

>>> s = pd.Series([1.2 + 1j])  # doctest: +SKIP
>>> s.abs()  # doctest: +SKIP
0    1.56205
dtype: float64

Absolute numeric values in a Series with a Timedelta element.

>>> s = pd.Series([pd.Timedelta('1 days')])  # doctest: +SKIP
>>> s.abs()  # doctest: +SKIP
0   1 days
dtype: timedelta64[ns]

Select rows with data closest to certain value using argsort (from StackOverflow).

>>> df = pd.DataFrame({  # doctest: +SKIP
...     'a': [4, 5, 6, 7],
...     'b': [10, 20, 30, 40],
...     'c': [100, 50, -30, -50]
... })
>>> df  # doctest: +SKIP
     a    b    c
0    4   10  100
1    5   20   50
2    6   30  -30
3    7   40  -50
>>> df.loc[(df.c - 43).abs().argsort()]  # doctest: +SKIP
     a    b    c
1    5   20   50
0    4   10  100
2    6   30  -30
3    7   40  -50
add(other, level=None, fill_value=None, axis=0)

Addition of series and other, element-wise (binary operator add).

Equivalent to series + other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series or scalar value
fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns:
result : Series

See also

Series.radd

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> a  # doctest: +SKIP
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])  # doctest: +SKIP
>>> b  # doctest: +SKIP
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)  # doctest: +SKIP
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
align(other, join='outer', axis=None, fill_value=None)

Align two objects on their axes with the specified join method for each axis Index

This docstring was copied from pandas.core.series.Series.align.

Some inconsistencies with the Dask version may exist.

Parameters:
other : DataFrame or Series
join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’
axis : allowed axis of the other object, default None

Align on index (0), columns (1), or both (None)

level : int or level name, default None (Not supported in Dask)

Broadcast across a level, matching Index values on the passed MultiIndex level

copy : boolean, default True (Not supported in Dask)

Always returns new objects. If copy=False and no reindexing is required then original objects are returned.

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

method : str, default None (Not supported in Dask)
limit : int, default None (Not supported in Dask)
fill_axis : {0 or ‘index’}, default 0 (Not supported in Dask)

Filling axis, method and limit

broadcast_axis : {0 or ‘index’}, default None (Not supported in Dask)

Broadcast values along this axis, if aligning two objects of different dimensions

Returns:
(left, right) : (Series, type of other)

Aligned objects

all(axis=None, skipna=True, split_every=False, out=None)

Return whether all elements are True, potentially over an axis.

This docstring was copied from pandas.core.frame.DataFrame.all.

Some inconsistencies with the Dask version may exist.

Returns True if all elements within a series or along a Dataframe axis are non-zero, not-empty or not-False.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

  • 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
  • 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.
  • None : reduce all axes, return a scalar.
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

bool_only : boolean, default None (Not supported in Dask)

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
all : Series or DataFrame (if level specified)

See also

pandas.Series.all
Return True if all elements are True
pandas.DataFrame.any
Return True if one (or more) elements are True

Examples

Series

>>> pd.Series([True, True]).all()  # doctest: +SKIP
True
>>> pd.Series([True, False]).all()  # doctest: +SKIP
False

DataFrames

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
   col1   col2
0  True   True
1  True  False

Default behaviour checks if column-wise values all return True.

>>> df.all()  # doctest: +SKIP
col1     True
col2    False
dtype: bool

Specify axis='columns' to check if row-wise values all return True.

>>> df.all(axis='columns')  # doctest: +SKIP
0     True
1    False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None)  # doctest: +SKIP
False
any(axis=None, skipna=True, split_every=False, out=None)

Return whether any element is True over requested axis.

This docstring was copied from pandas.core.frame.DataFrame.any.

Some inconsistencies with the Dask version may exist.

Unlike DataFrame.all(), this performs an or operation. If any of the values along the specified axis is True, this will return True.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0

Indicate which axis or axes should be reduced.

  • 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
  • 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.
  • None : reduce all axes, return a scalar.
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.

bool_only : boolean, default None (Not supported in Dask)

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

**kwargs : any, default None

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
any : Series or DataFrame (if level specified)

See also

pandas.DataFrame.all
Return whether all elements are True.

Examples

Series

For Series input, the output is a scalar indicating whether any element is True.

>>> pd.Series([True, False]).any()  # doctest: +SKIP
True

DataFrame

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
   A  B  C
0  1  0  0
1  2  2  0
>>> df.any()  # doctest: +SKIP
A     True
B     True
C    False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
       A  B
0   True  1
1  False  2
>>> df.any(axis='columns')  # doctest: +SKIP
0    True
1    True
dtype: bool
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
       A  B
0   True  1
1  False  0
>>> df.any(axis='columns')  # doctest: +SKIP
0    True
1    False
dtype: bool

Aggregating over the entire DataFrame with axis=None.

>>> df.any(axis=None)  # doctest: +SKIP
True

any for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any()  # doctest: +SKIP
Series([], dtype: bool)
append(other, interleave_partitions=False)

Concatenate two or more Series.

This docstring was copied from pandas.core.series.Series.append.

Some inconsistencies with the Dask version may exist.

Parameters:
to_append : Series or list/tuple of Series (Not supported in Dask)
ignore_index : boolean, default False (Not supported in Dask)

If True, do not use the index labels.

New in version 0.19.0.

verify_integrity : boolean, default False (Not supported in Dask)

If True, raise Exception on creating index with duplicates

Returns:
appended : Series

See also

pandas.concat
General function to concatenate DataFrame, Series or Panel objects

Notes

Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once.

Examples

>>> s1 = pd.Series([1, 2, 3])  # doctest: +SKIP
>>> s2 = pd.Series([4, 5, 6])  # doctest: +SKIP
>>> s3 = pd.Series([4, 5, 6], index=[3,4,5])  # doctest: +SKIP
>>> s1.append(s2)  # doctest: +SKIP
0    1
1    2
2    3
0    4
1    5
2    6
dtype: int64
>>> s1.append(s3)  # doctest: +SKIP
0    1
1    2
2    3
3    4
4    5
5    6
dtype: int64

With ignore_index set to True:

>>> s1.append(s2, ignore_index=True)  # doctest: +SKIP
0    1
1    2
2    3
3    4
4    5
5    6
dtype: int64

With verify_integrity set to True:

>>> s1.append(s2, verify_integrity=True)  # doctest: +SKIP
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: [0, 1, 2]
apply(func, convert_dtype=True, meta='__no_default__', args=(), **kwds)

Parallel version of pandas.Series.apply

Parameters:
func : function

Function to apply

convert_dtype : boolean, default True

Try to find better dtype for elementwise function results. If False, leave as dtype=object.

meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional

An empty pd.DataFrame or pd.Series that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a DataFrame, a dict of {name: dtype} or iterable of (name, dtype) can be provided. Instead of a series, a tuple of (name, dtype) can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing meta is recommended. For more information, see dask.dataframe.utils.make_meta.

args : tuple

Positional arguments to pass to function in addition to the value.

Additional keyword arguments will be passed as keywords to the function.
Returns:
applied : Series or DataFrame if func returns a Series.

See also

dask.Series.map_partitions

Examples

>>> import dask.dataframe as dd
>>> s = pd.Series(range(5), name='x')
>>> ds = dd.from_pandas(s, npartitions=2)

Apply a function elementwise across the Series, passing in extra arguments in args and kwargs:

>>> def myadd(x, a, b=1):
...     return x + a + b
>>> res = ds.apply(myadd, args=(2,), b=1.5)

By default, dask tries to infer the output metadata by running your provided function on some fake data. This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can manually specify the output metadata with the meta keyword. This can be specified in many forms, for more information see dask.dataframe.utils.make_meta.

Here we specify the output is a Series with name 'x', and dtype float64:

>>> res = ds.apply(myadd, args=(2,), b=1.5, meta=('x', 'f8'))

In the case where the metadata doesn’t change, you can also pass in the object itself directly:

>>> res = ds.apply(lambda x: x + 1, meta=ds)
astype(dtype)

Cast a pandas object to a specified dtype dtype.

This docstring was copied from pandas.core.frame.DataFrame.astype.

Some inconsistencies with the Dask version may exist.

Parameters:
dtype : data type, or dict of column name -> data type

Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

copy : bool, default True. (Not supported in Dask)

Return a copy when copy=True (be very careful setting copy=False as changes to values then may propagate to other pandas objects).

errors : {‘raise’, ‘ignore’}, default ‘raise’. (Not supported in Dask)

Control raising of exceptions on invalid data for provided dtype.

  • raise : allow exceptions to be raised
  • ignore : suppress exceptions. On error return original object

New in version 0.20.0.

raise_on_error : raise on invalid input

Deprecated since version 0.20.0: Use errors instead

kwargs : keyword arguments to pass on to the constructor
Returns:
casted : type of caller

See also

pandas.to_datetime
Convert argument to datetime.
pandas.to_timedelta
Convert argument to timedelta.
pandas.to_numeric
Convert argument to a numeric type.
numpy.ndarray.astype
Cast a numpy array to a specified type.

Examples

>>> ser = pd.Series([1, 2], dtype='int32')  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    1
1    2
dtype: int32
>>> ser.astype('int64')  # doctest: +SKIP
0    1
1    2
dtype: int64

Convert to categorical type:

>>> ser.astype('category')  # doctest: +SKIP
0    1
1    2
dtype: category
Categories (2, int64): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> ser.astype('category', ordered=True, categories=[2, 1])  # doctest: +SKIP
0    1
1    2
dtype: category
Categories (2, int64): [2 < 1]

Note that using copy=False and changing data on a new pandas object may propagate changes:

>>> s1 = pd.Series([1,2])  # doctest: +SKIP
>>> s2 = s1.astype('int64', copy=False)  # doctest: +SKIP
>>> s2[0] = 10  # doctest: +SKIP
>>> s1  # note that s1[0] has changed too  # doctest: +SKIP
0    10
1     2
dtype: int64
autocorr(lag=1, split_every=False)

Lag-N autocorrelation

This docstring was copied from pandas.core.series.Series.autocorr.

Some inconsistencies with the Dask version may exist.

Parameters:
lag : int, default 1

Number of lags to apply before performing autocorrelation.

Returns:
autocorr : float
between(left, right, inclusive=True)

Return boolean Series equivalent to left <= series <= right.

This docstring was copied from pandas.core.series.Series.between.

Some inconsistencies with the Dask version may exist.

This function returns a boolean vector containing True wherever the corresponding Series element is between the boundary values left and right. NA values are treated as False.

Parameters:
left : scalar

Left boundary.

right : scalar

Right boundary.

inclusive : bool, default True

Include boundaries.

Returns:
Series

Each element will be a boolean.

See also

pandas.Series.gt
Greater than of series and other
pandas.Series.lt
Less than of series and other

Notes

This function is equivalent to (left <= ser) & (ser <= right)

Examples

>>> s = pd.Series([2, 0, 4, 8, np.nan])  # doctest: +SKIP

Boundary values are included by default:

>>> s.between(1, 4)  # doctest: +SKIP
0     True
1    False
2     True
3    False
4    False
dtype: bool

With inclusive set to False boundary values are excluded:

>>> s.between(1, 4, inclusive=False)  # doctest: +SKIP
0     True
1    False
2    False
3    False
4    False
dtype: bool

left and right can be any scalar value:

>>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve'])  # doctest: +SKIP
>>> s.between('Anna', 'Daniel')  # doctest: +SKIP
0    False
1     True
2     True
3    False
dtype: bool
bfill(axis=None, limit=None)

Synonym for DataFrame.fillna(method='bfill')

clear_divisions()

Forget division information

clip(lower=None, upper=None, out=None)

Trim values at input threshold(s).

This docstring was copied from pandas.core.series.Series.clip.

Some inconsistencies with the Dask version may exist.

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.

Parameters:
lower : float or array_like, default None

Minimum threshold value. All values below this threshold will be set to it.

upper : float or array_like, default None

Maximum threshold value. All values above this threshold will be set to it.

axis : int or string axis name, optional (Not supported in Dask)

Align object with lower and upper along the given axis.

inplace : boolean, default False (Not supported in Dask)

Whether to perform the operation in place on the data.

New in version 0.21.0.

*args, **kwargs

Additional keywords have no effect but might be accepted for compatibility with numpy.

Returns:
Series or DataFrame

Same type as calling object with the values outside the clip boundaries replaced

See also

clip_lower
Clip values below specified threshold(s).
clip_upper
Clip values above specified threshold(s).

Examples

>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}  # doctest: +SKIP
>>> df = pd.DataFrame(data)  # doctest: +SKIP
>>> df  # doctest: +SKIP
   col_0  col_1
0      9     -2
1     -3     -7
2      0      6
3     -1      8
4      5     -5

Clips per column using lower and upper thresholds:

>>> df.clip(-4, 6)  # doctest: +SKIP
   col_0  col_1
0      6     -2
1     -3     -4
2      0      6
3     -1      6
4      5     -4

Clips using specific lower and upper thresholds per column element:

>>> t = pd.Series([2, -4, -1, 6, 3])  # doctest: +SKIP
>>> t  # doctest: +SKIP
0    2
1   -4
2   -1
3    6
4    3
dtype: int64
>>> df.clip(t, t + 4, axis=0)  # doctest: +SKIP
   col_0  col_1
0      6      2
1     -3     -4
2      0      3
3      6      8
4      5      3
clip_lower(threshold)

Return copy of the input with values below a threshold truncated.

This docstring was copied from pandas.core.series.Series.clip_lower.

Some inconsistencies with the Dask version may exist.

Parameters:
threshold : numeric or array-like

Minimum value allowed. All values below threshold will be set to this value.

  • float : every value is compared to threshold.
  • array-like : The shape of threshold should match the object it’s compared to. When self is a Series, threshold should be the length. When self is a DataFrame, threshold should 2-D and the same shape as self for axis=None, or 1-D and the same length as the axis being compared.
axis : {0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)

Align self with threshold along the given axis.

inplace : boolean, default False (Not supported in Dask)

Whether to perform the operation in place on the data.

New in version 0.21.0.

Returns:
clipped : same type as input

See also

Series.clip
Return copy of input with values below and above thresholds truncated.
Series.clip_upper
Return copy of input with values above threshold truncated.

Examples

Series single threshold clipping:

>>> s = pd.Series([5, 6, 7, 8, 9])  # doctest: +SKIP
>>> s.clip_lower(8)  # doctest: +SKIP
0    8
1    8
2    8
3    8
4    9
dtype: int64

Series clipping element-wise using an array of thresholds. threshold should be the same length as the Series.

>>> elemwise_thresholds = [4, 8, 7, 2, 5]  # doctest: +SKIP
>>> s.clip_lower(elemwise_thresholds)  # doctest: +SKIP
0    5
1    8
2    7
3    8
4    9
dtype: int64

DataFrames can be compared to a scalar.

>>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]})  # doctest: +SKIP
>>> df  # doctest: +SKIP
   A  B
0  1  2
1  3  4
2  5  6
>>> df.clip_lower(3)  # doctest: +SKIP
   A  B
0  3  3
1  3  4
2  5  6

Or to an array of values. By default, threshold should be the same shape as the DataFrame.

>>> df.clip_lower(np.array([[3, 4], [2, 2], [6, 2]]))  # doctest: +SKIP
   A  B
0  3  4
1  3  4
2  6  6

Control how threshold is broadcast with axis. In this case threshold should be the same length as the axis specified by axis.

>>> df.clip_lower(np.array([3, 3, 5]), axis='index')  # doctest: +SKIP
   A  B
0  3  3
1  3  4
2  5  6
>>> df.clip_lower(np.array([4, 5]), axis='columns')  # doctest: +SKIP
   A  B
0  4  5
1  4  5
2  5  6
clip_upper(threshold)

Return copy of input with values above given value(s) truncated.

This docstring was copied from pandas.core.series.Series.clip_upper.

Some inconsistencies with the Dask version may exist.

Parameters:
threshold : float or array_like
axis : int or string axis name, optional (Not supported in Dask)

Align object with threshold along the given axis.

inplace : boolean, default False (Not supported in Dask)

Whether to perform the operation in place on the data

New in version 0.21.0.

Returns:
clipped : same type as input

See also

clip

combine(other, func, fill_value=None)

Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other

This docstring was copied from pandas.core.series.Series.combine.

Some inconsistencies with the Dask version may exist.

Parameters:
other : Series or scalar value
func : function

Function that takes two scalars as inputs and return a scalar

fill_value : scalar value
Returns:
result : Series

See also

Series.combine_first
Combine Series values, choosing the calling Series’s values first

Examples

>>> s1 = Series([1, 2])  # doctest: +SKIP
>>> s2 = Series([0, 3])  # doctest: +SKIP
>>> s1.combine(s2, lambda x1, x2: x1 if x1 < x2 else x2)  # doctest: +SKIP
0    0
1    2
dtype: int64
combine_first(other)

Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two indexes

This docstring was copied from pandas.core.series.Series.combine_first.

Some inconsistencies with the Dask version may exist.

Parameters:
other : Series
Returns:
combined : Series

See also

Series.combine
Perform elementwise operation on two Series using a given function

Examples

>>> s1 = pd.Series([1, np.nan])  # doctest: +SKIP
>>> s2 = pd.Series([3, 4])  # doctest: +SKIP
>>> s1.combine_first(s2)  # doctest: +SKIP
0    1.0
1    4.0
dtype: float64
compute(**kwargs)

Compute this dask collection

This turns a lazy Dask collection into its in-memory equivalent. For example a Dask.array turns into a numpy.array() and a Dask.dataframe turns into a Pandas dataframe. The entire dataset must fit into memory before calling this operation.

Parameters:
scheduler : string, optional

Which scheduler to use like “threads”, “synchronous” or “processes”. If not provided, the default is to check the global settings first, and then fall back to the collection defaults.

optimize_graph : bool, optional

If True [default], the graph is optimized before computation. Otherwise the graph is run as is. This can be useful for debugging.

kwargs

Extra keywords to forward to the scheduler function.

See also

dask.base.compute

copy()

Make a copy of the dataframe

This is strictly a shallow copy of the underlying computational graph. It does not affect the underlying data

corr(other, method='pearson', min_periods=None, split_every=False)

Compute correlation with other Series, excluding missing values

This docstring was copied from pandas.core.series.Series.corr.

Some inconsistencies with the Dask version may exist.

Parameters:
other : Series
method : {‘pearson’, ‘kendall’, ‘spearman’}
  • pearson : standard correlation coefficient
  • kendall : Kendall Tau correlation coefficient
  • spearman : Spearman rank correlation
min_periods : int, optional

Minimum number of observations needed to have a valid result

Returns:
correlation : float
count(split_every=False)

Return number of non-NA/null observations in the Series

This docstring was copied from pandas.core.series.Series.count.

Some inconsistencies with the Dask version may exist.

Parameters:
level : int or level name, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series

Returns:
nobs : int or Series (if level specified)
cov(other, min_periods=None, split_every=False)

Compute covariance with Series, excluding missing values

This docstring was copied from pandas.core.series.Series.cov.

Some inconsistencies with the Dask version may exist.

Parameters:
other : Series
min_periods : int, optional

Minimum number of observations needed to have a valid result

Returns:
covariance : float
Normalized by N-1 (unbiased estimator).
cummax(axis=None, skipna=True, out=None)

Return cumulative maximum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cummax.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
cummax : Series or DataFrame

See also

pandas.core.window.Expanding.max
Similar functionality but ignores NaN values.
DataFrame.max
Return the maximum over DataFrame axis.
DataFrame.cummax
Return cumulative maximum over DataFrame axis.
DataFrame.cummin
Return cumulative minimum over DataFrame axis.
DataFrame.cumsum
Return cumulative sum over DataFrame axis.
DataFrame.cumprod
Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])  # doctest: +SKIP
>>> s  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummax()  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3    5.0
4    5.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummax(skipna=False)  # doctest: +SKIP
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],  # doctest: +SKIP
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cummax()  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  3.0  1.0

To iterate over columns and find the maximum in each row, use axis=1

>>> df.cummax(axis=1)  # doctest: +SKIP
     A    B
0  2.0  2.0
1  3.0  NaN
2  1.0  1.0
cummin(axis=None, skipna=True, out=None)

Return cumulative minimum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cummin.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
cummin : Series or DataFrame

See also

pandas.core.window.Expanding.min
Similar functionality but ignores NaN values.
DataFrame.min
Return the minimum over DataFrame axis.
DataFrame.cummax
Return cumulative maximum over DataFrame axis.
DataFrame.cummin
Return cumulative minimum over DataFrame axis.
DataFrame.cumsum
Return cumulative sum over DataFrame axis.
DataFrame.cumprod
Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])  # doctest: +SKIP
>>> s  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin()  # doctest: +SKIP
0    2.0
1    NaN
2    2.0
3   -1.0
4   -1.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummin(skipna=False)  # doctest: +SKIP
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],  # doctest: +SKIP
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cummin()  # doctest: +SKIP
     A    B
0  2.0  1.0
1  2.0  NaN
2  1.0  0.0

To iterate over columns and find the minimum in each row, use axis=1

>>> df.cummin(axis=1)  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0
cumprod(axis=None, skipna=True, dtype=None, out=None)

Return cumulative product over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cumprod.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative product.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
cumprod : Series or DataFrame

See also

pandas.core.window.Expanding.prod
Similar functionality but ignores NaN values.
DataFrame.prod
Return the product over DataFrame axis.
DataFrame.cummax
Return cumulative maximum over DataFrame axis.
DataFrame.cummin
Return cumulative minimum over DataFrame axis.
DataFrame.cumsum
Return cumulative sum over DataFrame axis.
DataFrame.cumprod
Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])  # doctest: +SKIP
>>> s  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod()  # doctest: +SKIP
0     2.0
1     NaN
2    10.0
3   -10.0
4    -0.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumprod(skipna=False)  # doctest: +SKIP
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],  # doctest: +SKIP
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or axis='index'.

>>> df.cumprod()  # doctest: +SKIP
     A    B
0  2.0  1.0
1  6.0  NaN
2  6.0  0.0

To iterate over columns and find the product in each row, use axis=1

>>> df.cumprod(axis=1)  # doctest: +SKIP
     A    B
0  2.0  2.0
1  3.0  NaN
2  1.0  0.0
cumsum(axis=None, skipna=True, dtype=None, out=None)

Return cumulative sum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cumsum.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

The index or the name of the axis. 0 is equivalent to None or ‘index’.

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

*args, **kwargs :

Additional keywords have no effect but might be accepted for compatibility with NumPy.

Returns:
cumsum : Series or DataFrame

See also

pandas.core.window.Expanding.sum
Similar functionality but ignores NaN values.
DataFrame.sum
Return the sum over DataFrame axis.
DataFrame.cummax
Return cumulative maximum over DataFrame axis.
DataFrame.cummin
Return cumulative minimum over DataFrame axis.
DataFrame.cumsum
Return cumulative sum over DataFrame axis.
DataFrame.cumprod
Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0])  # doctest: +SKIP
>>> s  # doctest: +SKIP
0    2.0
1    NaN
2    5.0
3   -1.0
4    0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumsum()  # doctest: +SKIP
0    2.0
1    NaN
2    7.0
3    6.0
4    6.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumsum(skipna=False)  # doctest: +SKIP
0    2.0
1    NaN
2    NaN
3    NaN
4    NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0],  # doctest: +SKIP
...                    [3.0, np.nan],
...                    [1.0, 0.0]],
...                    columns=list('AB'))
>>> df  # doctest: +SKIP
     A    B
0  2.0  1.0
1  3.0  NaN
2  1.0  0.0

By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or axis='index'.

>>> df.cumsum()  # doctest: +SKIP
     A    B
0  2.0  1.0
1  5.0  NaN
2  6.0  1.0

To iterate over columns and find the sum in each row, use axis=1

>>> df.cumsum(axis=1)  # doctest: +SKIP
     A    B
0  2.0  3.0
1  3.0  NaN
2  1.0  1.0
describe(split_every=False, percentiles=None, percentiles_method='default', include=None, exclude=None)

Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values.

This docstring was copied from pandas.core.frame.DataFrame.describe.

Some inconsistencies with the Dask version may exist.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.

Parameters:
percentiles : list-like of numbers, optional

The percentiles to include in the output. All should fall between 0 and 1. The default is [.25, .5, .75], which returns the 25th, 50th, and 75th percentiles.

include : ‘all’, list-like of dtypes or None (default), optional

A white list of data types to include in the result. Ignored for Series. Here are the options:

  • ‘all’ : All columns of the input will be included in the output.
  • A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit numpy.number. To limit it instead to object columns submit the numpy.object data type. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O'])). To select pandas categorical columns, use 'category'
  • None (default) : The result will include all numeric columns.
exclude : list-like of dtypes or None (default), optional,

A black list of data types to omit from the result. Ignored for Series. Here are the options:

  • A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit numpy.number. To exclude object columns submit the data type numpy.object. Strings can also be used in the style of select_dtypes (e.g. df.describe(include=['O'])). To exclude pandas categorical columns, use 'category'
  • None (default) : The result will exclude nothing.
Returns:
summary: Series/DataFrame of summary statistics

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and freq. The top is the most common value. The freq is the most common value’s frequency. Timestamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen from among those with the highest count.

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If include='all' is provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3])  # doctest: +SKIP
>>> s.describe()  # doctest: +SKIP
count    3.0
mean     2.0
std      1.0
min      1.0
25%      1.5
50%      2.0
75%      2.5
max      3.0

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c'])  # doctest: +SKIP
>>> s.describe()  # doctest: +SKIP
count     4
unique    3
top       a
freq      2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([  # doctest: +SKIP
...   np.datetime64("2000-01-01"),
...   np.datetime64("2010-01-01"),
...   np.datetime64("2010-01-01")
... ])
>>> s.describe()  # doctest: +SKIP
count                       3
unique                      2
top       2010-01-01 00:00:00
freq                        2
first     2000-01-01 00:00:00
last      2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({ 'object': ['a', 'b', 'c'],  # doctest: +SKIP
...                     'numeric': [1, 2, 3],
...                     'categorical': pd.Categorical(['d','e','f'])
...                   })
>>> df.describe()  # doctest: +SKIP
       numeric
count      3.0
mean       2.0
std        1.0
min        1.0
25%        1.5
50%        2.0
75%        2.5
max        3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all')  # doctest: +SKIP
        categorical  numeric object
count            3      3.0      3
unique           3      NaN      3
top              f      NaN      c
freq             1      NaN      1
mean           NaN      2.0    NaN
std            NaN      1.0    NaN
min            NaN      1.0    NaN
25%            NaN      1.5    NaN
50%            NaN      2.0    NaN
75%            NaN      2.5    NaN
max            NaN      3.0    NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe()  # doctest: +SKIP
count    3.0
mean     2.0
std      1.0
min      1.0
25%      1.5
50%      2.0
75%      2.5
max      3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number])  # doctest: +SKIP
       numeric
count      3.0
mean       2.0
std        1.0
min        1.0
25%        1.5
50%        2.0
75%        2.5
max        3.0

Including only string columns in a DataFrame description.

>>> df.describe(include=[np.object])  # doctest: +SKIP
       object
count       3
unique      3
top         c
freq        1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category'])  # doctest: +SKIP
       categorical
count            3
unique           3
top              f
freq             1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number])  # doctest: +SKIP
       categorical object
count            3      3
unique           3      3
top              f      c
freq             1      1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[np.object])  # doctest: +SKIP
        categorical  numeric
count            3      3.0
unique           3      NaN
top              f      NaN
freq             1      NaN
mean           NaN      2.0
std            NaN      1.0
min            NaN      1.0
25%            NaN      1.5
50%            NaN      2.0
75%            NaN      2.5
max            NaN      3.0
diff(periods=1, axis=0)

First discrete difference of element.

This docstring was copied from pandas.core.frame.DataFrame.diff.

Some inconsistencies with the Dask version may exist.

Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row).

Parameters:
periods : int, default 1

Periods to shift for calculating difference, accepts negative values.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Take difference over rows (0) or columns (1).

New in version 0.16.1..

Returns:
diffed : DataFrame

See also

Series.diff
First discrete difference for a Series.
DataFrame.pct_change
Percent change over given number of periods.
DataFrame.shift
Shift index by desired number of periods with an optional time freq.

Examples

Difference with previous row

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6],  # doctest: +SKIP
...                    'b': [1, 1, 2, 3, 5, 8],
...                    'c': [1, 4, 9, 16, 25, 36]})
>>> df  # doctest: +SKIP
   a  b   c
0  1  1   1
1  2  1   4
2  3  2   9
3  4  3  16
4  5  5  25
5  6  8  36
>>> df.diff()  # doctest: +SKIP
     a    b     c
0  NaN  NaN   NaN
1  1.0  0.0   3.0
2  1.0  1.0   5.0
3  1.0  1.0   7.0
4  1.0  2.0   9.0
5  1.0  3.0  11.0

Difference with previous column

>>> df.diff(axis=1)  # doctest: +SKIP
    a    b     c
0 NaN  0.0   0.0
1 NaN -1.0   3.0
2 NaN -1.0   7.0
3 NaN -1.0  13.0
4 NaN  0.0  20.0
5 NaN  2.0  28.0

Difference with 3rd previous row

>>> df.diff(periods=3)  # doctest: +SKIP
     a    b     c
0  NaN  NaN   NaN
1  NaN  NaN   NaN
2  NaN  NaN   NaN
3  3.0  2.0  15.0
4  3.0  4.0  21.0
5  3.0  6.0  27.0

Difference with following row

>>> df.diff(periods=-1)  # doctest: +SKIP
     a    b     c
0 -1.0  0.0  -3.0
1 -1.0 -1.0  -5.0
2 -1.0 -1.0  -7.0
3 -1.0 -2.0  -9.0
4 -1.0 -3.0 -11.0
5  NaN  NaN   NaN
div(other, level=None, fill_value=None, axis=0)

Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series or scalar value
fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns:
result : Series

See also

Series.rtruediv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> a  # doctest: +SKIP
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])  # doctest: +SKIP
>>> b  # doctest: +SKIP
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)  # doctest: +SKIP
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
drop_duplicates(split_every=None, split_out=1, **kwargs)

Return DataFrame with duplicate rows removed, optionally only considering certain columns

This docstring was copied from pandas.core.frame.DataFrame.drop_duplicates.

Some inconsistencies with the Dask version may exist.

Parameters:
subset : column label or sequence of labels, optional (Not supported in Dask)

Only consider certain columns for identifying duplicates, by default use all of the columns

keep : {‘first’, ‘last’, False}, default ‘first’ (Not supported in Dask)
  • first : Drop duplicates except for the first occurrence.
  • last : Drop duplicates except for the last occurrence.
  • False : Drop all duplicates.
inplace : boolean, default False (Not supported in Dask)

Whether to drop duplicates in place or to return a copy

Returns:
deduplicated : DataFrame
dropna()

Return a new Series with missing values removed.

This docstring was copied from pandas.core.series.Series.dropna.

Some inconsistencies with the Dask version may exist.

See the User Guide for more on which values are considered missing, and how to work with missing data.

Parameters:
axis : {0 or ‘index’}, default 0 (Not supported in Dask)

There is only one axis to drop values from.

inplace : bool, default False (Not supported in Dask)

If True, do operation inplace and return None.

**kwargs

Not in use.

Returns:
Series

Series with NA entries dropped from it.

See also

Series.isna
Indicate missing values.
Series.notna
Indicate existing (non-missing) values.
Series.fillna
Replace missing values.
DataFrame.dropna
Drop rows or columns which contain NA values.
Index.dropna
Drop missing indices.

Examples

>>> ser = pd.Series([1., 2., np.nan])  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    1.0
1    2.0
2    NaN
dtype: float64

Drop NA values from a Series.

>>> ser.dropna()  # doctest: +SKIP
0    1.0
1    2.0
dtype: float64

Keep the Series with valid entries in the same variable.

>>> ser.dropna(inplace=True)  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    1.0
1    2.0
dtype: float64

Empty strings are not considered NA values. None is considered an NA value.

>>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay'])  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0       NaN
1         2
2       NaT
3
4      None
5    I stay
dtype: object
>>> ser.dropna()  # doctest: +SKIP
1         2
3
5    I stay
dtype: object
dt

Namespace of datetime methods

dtype

Return data type

eq(other, level=None, fill_value=None, axis=0)

Equal to of series and other, element-wise (binary operator eq).

Equivalent to series == other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series or scalar value
fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns:
result : Series

See also

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> a  # doctest: +SKIP
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])  # doctest: +SKIP
>>> b  # doctest: +SKIP
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)  # doctest: +SKIP
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
ffill(axis=None, limit=None)

Synonym for DataFrame.fillna(method='ffill')

fillna(value=None, method=None, limit=None, axis=None)

Fill NA/NaN values using the specified method

This docstring was copied from pandas.core.frame.DataFrame.fillna.

Some inconsistencies with the Dask version may exist.

Parameters:
value : scalar, dict, Series, or DataFrame

Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

axis : {0 or ‘index’, 1 or ‘columns’}
inplace : boolean, default False (Not supported in Dask)

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None.

downcast : dict, default is None (Not supported in Dask)

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns:
filled : DataFrame

See also

interpolate
Fill NaN values using interpolation.

reindex, asfreq

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],  # doctest: +SKIP
...                    [3, 4, np.nan, 1],
...                    [np.nan, np.nan, np.nan, 5],
...                    [np.nan, 3, np.nan, 4]],
...                    columns=list('ABCD'))
>>> df  # doctest: +SKIP
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

Replace all NaN elements with 0s.

>>> df.fillna(0)  # doctest: +SKIP
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill')  # doctest: +SKIP
    A   B   C   D
0   NaN 2.0 NaN 0
1   3.0 4.0 NaN 1
2   3.0 4.0 NaN 5
3   3.0 3.0 NaN 4

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}  # doctest: +SKIP
>>> df.fillna(value=values)  # doctest: +SKIP
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 2.0 1
2   0.0 1.0 2.0 5
3   0.0 3.0 2.0 4

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1)  # doctest: +SKIP
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 NaN 1
2   NaN 1.0 NaN 5
3   NaN 3.0 NaN 4
first(offset)

Convenience method for subsetting initial periods of time series data based on a date offset.

This docstring was copied from pandas.core.frame.DataFrame.first.

Some inconsistencies with the Dask version may exist.

Parameters:
offset : string, DateOffset, dateutil.relativedelta
Returns:
subset : type of caller
Raises:
TypeError

If the index is not a DatetimeIndex

See also

last
Select final periods of time series based on a date offset
at_time
Select values at a particular time of the day
between_time
Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')  # doctest: +SKIP
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)  # doctest: +SKIP
>>> ts  # doctest: +SKIP
            A
2018-04-09  1
2018-04-11  2
2018-04-13  3
2018-04-15  4

Get the rows for the first 3 days:

>>> ts.first('3D')  # doctest: +SKIP
            A
2018-04-09  1
2018-04-11  2

Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned.

floordiv(other, level=None, fill_value=None, axis=0)

Integer division of series and other, element-wise (binary operator floordiv).

Equivalent to series // other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series or scalar value
fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns:
result : Series

See also

Series.rfloordiv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> a  # doctest: +SKIP
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])  # doctest: +SKIP
>>> b  # doctest: +SKIP
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)  # doctest: +SKIP
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
ge(other, level=None, fill_value=None, axis=0)

Greater than or equal to of series and other, element-wise (binary operator ge).

Equivalent to series >= other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series or scalar value
fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns:
result : Series

See also

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> a  # doctest: +SKIP
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])  # doctest: +SKIP
>>> b  # doctest: +SKIP
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)  # doctest: +SKIP
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
get_partition(n)

Get a dask DataFrame/Series representing the nth partition.

groupby(by=None, **kwargs)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

This docstring was copied from pandas.core.series.Series.groupby.

Some inconsistencies with the Dask version may exist.

Parameters:
by : mapping, function, label, or list of labels

Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align() method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in self. Notice that a tuple is interpreted a (single) key.

axis : int, default 0 (Not supported in Dask)
level : int, level name, or sequence of such, default None (Not supported in Dask)

If the axis is a MultiIndex (hierarchical), group by a particular level or levels

as_index : boolean, default True (Not supported in Dask)

For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

sort : boolean, default True (Not supported in Dask)

Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

group_keys : boolean, default True (Not supported in Dask)

When calling apply, add group keys to index to identify pieces

squeeze : boolean, default False (Not supported in Dask)

reduce the dimensionality of the return type if possible, otherwise return a consistent type

observed : boolean, default False (Not supported in Dask)

This only applies if any of the groupers are Categoricals If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.

New in version 0.23.0.

Returns:
GroupBy object

See also

resample
Convenience method for frequency conversion and resampling of time series.

Notes

See the user guide for more.

Examples

DataFrame results

>>> data.groupby(func, axis=0).mean()  # doctest: +SKIP
>>> data.groupby(['col1', 'col2'])['col3'].mean()  # doctest: +SKIP

DataFrame with hierarchical index

>>> data.groupby(['col1', 'col2']).mean()  # doctest: +SKIP
gt(other, level=None, fill_value=None, axis=0)

Greater than of series and other, element-wise (binary operator gt).

Equivalent to series > other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series or scalar value
fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns:
result : Series

See also

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> a  # doctest: +SKIP
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])  # doctest: +SKIP
>>> b  # doctest: +SKIP
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)  # doctest: +SKIP
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
head(n=5, npartitions=1, compute=True)

First n rows of the dataset

Parameters:
n : int, optional

The number of rows to return. Default is 5.

npartitions : int, optional

Elements are only taken from the first npartitions, with a default of 1. If there are fewer than n rows in the first npartitions a warning will be raised and any found rows returned. Pass -1 to use all partitions.

compute : bool, optional

Whether to compute the result, default is True.

idxmax(axis=None, skipna=True, split_every=False)

Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmax.

Some inconsistencies with the Dask version may exist.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns:
idxmax : Series
Raises:
ValueError
  • If the row/column is empty

See also

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

idxmin(axis=None, skipna=True, split_every=False)

Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmin.

Some inconsistencies with the Dask version may exist.

Parameters:
axis : {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns:
idxmin : Series
Raises:
ValueError
  • If the row/column is empty

See also

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

index

Return dask Index instance

isin(values)

Check whether values are contained in Series.

This docstring was copied from pandas.core.series.Series.isin.

Some inconsistencies with the Dask version may exist.

Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of values exactly.

Parameters:
values : set or list-like

The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element.

New in version 0.18.1: Support for values as a set.

Returns:
isin : Series (bool dtype)
Raises:
TypeError
  • If values is a string

See also

pandas.DataFrame.isin
equivalent method on DataFrame

Examples

>>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama',  # doctest: +SKIP
...                'hippo'], name='animal')
>>> s.isin(['cow', 'lama'])  # doctest: +SKIP
0     True
1     True
2     True
3    False
4     True
5    False
Name: animal, dtype: bool

Passing a single string as s.isin('lama') will raise an error. Use a list of one element instead:

>>> s.isin(['lama'])  # doctest: +SKIP
0     True
1    False
2     True
3    False
4     True
5    False
Name: animal, dtype: bool
isna()

Detect missing values.

This docstring was copied from pandas.core.frame.DataFrame.isna.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).

Returns:
DataFrame

Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.

See also

DataFrame.isnull
alias of isna
DataFrame.notna
boolean inverse of isna
DataFrame.dropna
omit axes labels with missing values
isna
top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],  # doctest: +SKIP
...                    'born': [pd.NaT, pd.Timestamp('1939-05-27'),
...                             pd.Timestamp('1940-04-25')],
...                    'name': ['Alfred', 'Batman', ''],
...                    'toy': [None, 'Batmobile', 'Joker']})
>>> df  # doctest: +SKIP
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.isna()  # doctest: +SKIP
     age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.isna()  # doctest: +SKIP
0    False
1    False
2     True
dtype: bool
isnull()

Detect missing values.

This docstring was copied from pandas.core.frame.DataFrame.isnull.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).

Returns:
DataFrame

Mask of bool values for each element in DataFrame that indicates whether an element is not an NA value.

See also

DataFrame.isnull
alias of isna
DataFrame.notna
boolean inverse of isna
DataFrame.dropna
omit axes labels with missing values
isna
top-level isna

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN],  # doctest: +SKIP
...                    'born': [pd.NaT, pd.Timestamp('1939-05-27'),
...                             pd.Timestamp('1940-04-25')],
...                    'name': ['Alfred', 'Batman', ''],
...                    'toy': [None, 'Batmobile', 'Joker']})
>>> df  # doctest: +SKIP
   age       born    name        toy
0  5.0        NaT  Alfred       None
1  6.0 1939-05-27  Batman  Batmobile
2  NaN 1940-04-25              Joker
>>> df.isna()  # doctest: +SKIP
     age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN])  # doctest: +SKIP
>>> ser  # doctest: +SKIP
0    5.0
1    6.0
2    NaN
dtype: float64
>>> ser.isna()  # doctest: +SKIP
0    False
1    False
2     True
dtype: bool
iteritems()

Lazily iterate over (index, value) tuples

known_divisions

Whether divisions are already known

last(offset)

Convenience method for subsetting final periods of time series data based on a date offset.

This docstring was copied from pandas.core.frame.DataFrame.last.

Some inconsistencies with the Dask version may exist.

Parameters:
offset : string, DateOffset, dateutil.relativedelta
Returns:
subset : type of caller
Raises:
TypeError

If the index is not a DatetimeIndex

See also

first
Select initial periods of time series based on a date offset
at_time
Select values at a particular time of the day
between_time
Select values between particular times of the day

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D')  # doctest: +SKIP
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i)  # doctest: +SKIP
>>> ts  # doctest: +SKIP
            A
2018-04-09  1
2018-04-11  2
2018-04-13  3
2018-04-15  4

Get the rows for the last 3 days:

>>> ts.last('3D')  # doctest: +SKIP
            A
2018-04-13  3
2018-04-15  4

Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned.

le(other, level=None, fill_value=None, axis=0)

Less than or equal to of series and other, element-wise (binary operator le).

Equivalent to series <= other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series or scalar value
fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns:
result : Series

See also

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> a  # doctest: +SKIP
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])  # doctest: +SKIP
>>> b  # doctest: +SKIP
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)  # doctest: +SKIP
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
loc

Purely label-location based indexer for selection by label.

>>> df.loc["b"]  # doctest: +SKIP
>>> df.loc["b":"d"]  # doctest: +SKIP
lt(other, level=None, fill_value=None, axis=0)

Less than of series and other, element-wise (binary operator lt).

Equivalent to series < other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters:
other : Series or scalar value
fill_value : None or float value, default None (NaN)

Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns:
result : Series

See also

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd'])  # doctest: +SKIP
>>> a  # doctest: +SKIP
a    1.0
b    1.0
c    1.0
d    NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e'])  # doctest: +SKIP
>>> b  # doctest: +SKIP
a    1.0
b    NaN
d    1.0
e    NaN
dtype: float64
>>> a.add(b, fill_value=0)  # doctest: +SKIP
a    2.0
b    1.0
c    1.0
d    1.0
e    NaN
dtype: float64
map(arg, na_action=None, meta='__no_default__')

Map values of Series using input correspondence (a dict, Series, or function).

This docstring was copied from pandas.core.series.Series.map.

Some inconsistencies with the Dask version may exist.

Parameters:
arg : function, dict, or Series

Mapping correspondence.

na_action : {None, ‘ignore’}

If ‘ignore’, propagate NA values, without passing them to the mapping correspondence.

meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional

An empty pd.DataFrame or pd.Series that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a DataFrame, a dict of {name: dtype} or iterable of (name, dtype) can be provided. Instead of a series, a tuple of (name, dtype) can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing meta is recommended. For more information, see dask.dataframe.utils.make_meta.

Returns:
y : Series

Same index as caller.

See also

Series.apply
For applying more complex functions on a Series.
DataFrame.apply
Apply a function row-/column-wise.
DataFrame.applymap
Apply a function elementwise on a whole DataFrame.

Notes

When arg is a dictionary, values in Series that are not in the dictionary (as keys) are converted to NaN. However, if the dictionary is a dict subclass that defines __missing__ (i.e. provides a method for default values), then this default is used rather than NaN:

>>> from collections import Counter  # doctest: +SKIP
>>> counter = Counter()  # doctest: +SKIP
>>> counter['bar'] += 1  # doctest: +SKIP
>>> y.map(counter)  # doctest: +SKIP
1    0
2    1
3    0
dtype: int64

Examples

Map inputs to outputs (both of type Series):

>>> x = pd.Series([1,2,3], index=['one', 'two', 'three'])  # doctest: +SKIP
>>> x  # doctest: +SKIP
one      1
two      2
three    3
dtype: int64
>>> y = pd.Series(['foo', 'bar', 'baz'], index=[1,2,3])  # doctest: +SKIP
>>> y  # doctest: +SKIP
1    foo
2    bar
3    baz
>>> x.map(y)  # doctest: +SKIP
one   foo
two   bar
three baz

If arg is a dictionary, return a new Series with values converted according to the dictionary’s mapping:

>>> z = {1: 'A', 2: 'B', 3: 'C'}  # doctest: +SKIP
>>> x.map(z)  # doctest: +SKIP
one   A
two   B
three C

Use na_action to control whether NA values are affected by the mapping function.

>>> s = pd.Series([1, 2, 3, np.nan])  # doctest: +SKIP
>>> s2 = s.map('this is a string {}'.format, na_action=None)  # doctest: +SKIP
0    this is a string 1.0
1    this is a string 2.0
2    this is a string 3.0
3    this is a string nan
dtype: object
>>> s3 = s.map('this is a string {}'.format, na_action='ignore')  # doctest: +SKIP
0    this is a string 1.0
1    this is a string 2.0
2    this is a string 3.0
3                     NaN
dtype: object
map_overlap(func, before, after, *args, **kwargs)

Apply a function to each partition, sharing rows with adjacent partitions.

This can be useful for implementing windowing functions such as df.rolling(...).mean() or df.diff().

Parameters:
func : function

Function applied to each partition.

before : int

The number of rows to prepend to partition i from the end of partition i - 1.

after : int

The number of rows to append to partition i from the beginning of partition i + 1.

args, kwargs :

Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed after.

meta : pd.DataFrame, pd.Series, dict, iterable, tuple, optional

An empty pd.DataFrame or pd.Series that matches the dtypes and column names of the output. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a DataFrame, a dict of {name: dtype} or iterable of (name, dtype) can be provided. Instead of a series, a tuple of (name, dtype) can be used. If not provided, dask will try to infer the metadata. This may lead to unexpected results, so providing meta is recommended. For more information, see dask.dataframe.utils.make_meta.

Notes

Given positive integers before and after, and a function func, map_overlap does the following:

  1. Prepend before rows to each partition i from the end of partition i - 1. The first partition has no rows prepended.
  2. Append after rows to each partition i from the beginning of partition i + 1. The last partition has no rows appended.
  3. Apply func to each partition, passing in any extra args and kwargs if provided.
  4. Trim before rows from the beginning of all but the first partition.
  5. Trim after rows from the end of all but the last partition.

Note that the index and divisions are assumed to remain unchanged.

Examples

Given a DataFrame, Series, or Index, such as:

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 4, 7, 11],
...                    'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

A rolling sum with a trailing moving window of size 2 can be computed by overlapping 2 rows before each partition, and then mapping calls to df.rolling(2).sum():

>>> ddf.compute()
    x    y
0   1  1.0
1   2  2.0
2   4  3.0
3   7  4.0
4  11  5.0
>>> ddf.map_overlap(lambda df: df.rolling(2).sum(), 2, 0).compute()
      x    y
0   NaN  NaN
1   3.0  3.0
2   6.0  5.0
3  11.0  7.0
4  18.0  9.0

The pandas diff method computes a discrete difference shifted by a number of periods (can be positive or