dask.dataframe.DataFrame.count
dask.dataframe.DataFrame.count¶
- DataFrame.count(axis=None, split_every=False, numeric_only=False)¶
Count non-NA cells for each column or row.
This docstring was copied from pandas.core.frame.DataFrame.count.
Some inconsistencies with the Dask version may exist.
The values None, NaN, NaT, and optionally numpy.inf (depending on pandas.options.mode.use_inf_as_na) are considered NA.
- Parameters
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.
- numeric_onlybool, default False
Include only float, int or boolean data.
- Returns
- Series or DataFrame
For each column/row the number of non-NA/null entries. If level is specified returns a DataFrame.
See also
Series.count
Number of non-NA elements in a Series.
DataFrame.value_counts
Count unique combinations of columns.
DataFrame.shape
Number of DataFrame rows and columns (including NA elements).
DataFrame.isna
Boolean same-sized DataFrame showing places of NA elements.
Examples
Constructing DataFrame from a dictionary:
>>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False
Notice the uncounted NA values:
>>> df.count() Person 5 Age 4 Single 5 dtype: int64
Counts for each row:
>>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64