dask.dataframe.tseries.resample.Resampler.count

dask.dataframe.tseries.resample.Resampler.count

Resampler.count()[source]

Compute count of group, excluding missing values.

This docstring was copied from pandas.core.resample.Resampler.count.

Some inconsistencies with the Dask version may exist.

Returns
Series or DataFrame

Count of values within each group.

See also

Series.groupby

Apply a function groupby to a Series.

DataFrame.groupby

Apply a function groupby to each row or column of a DataFrame.

Examples

For SeriesGroupBy:

>>> lst = ['a', 'a', 'b']  
>>> ser = pd.Series([1, 2, np.nan], index=lst)  
>>> ser  
a    1.0
a    2.0
b    NaN
dtype: float64
>>> ser.groupby(level=0).count()  
a    2
b    0
dtype: int64

For DataFrameGroupBy:

>>> data = [[1, np.nan, 3], [1, np.nan, 6], [7, 8, 9]]  
>>> df = pd.DataFrame(data, columns=["a", "b", "c"],  
...                   index=["cow", "horse", "bull"])
>>> df  
        a         b     c
cow     1       NaN     3
horse   1       NaN     6
bull    7       8.0     9
>>> df.groupby("a").count()  
    b   c
a
1   0   2
7   1   1

For Resampler:

>>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex(  
...                 ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15']))
>>> ser  
2023-01-01    1
2023-01-15    2
2023-02-01    3
2023-02-15    4
dtype: int64
>>> ser.resample('MS').count()  
2023-01-01    2
2023-02-01    2
Freq: MS, dtype: int64