Source code for dask.dataframe.tseries.resample

from __future__ import annotations

import numpy as np
import pandas as pd
from pandas.core.resample import Resampler as pd_Resampler

from dask.base import tokenize
from dask.dataframe import methods
from dask.dataframe._compat import PANDAS_GE_140
from dask.dataframe.core import DataFrame, Series
from dask.highlevelgraph import HighLevelGraph
from dask.utils import derived_from

def _resample_series(
    out = getattr(series.resample(rule, **resample_kwargs), how)(
        *how_args, **how_kwargs

    if PANDAS_GE_140:
        if reindex_closed is None:
            inclusive = "both"
            inclusive = reindex_closed
        closed_kwargs = {"inclusive": inclusive}
        closed_kwargs = {"closed": reindex_closed}

    new_index = pd.date_range(
    ).tz_localize(, nonexistent="shift_forward")

    if not out.index.isin(new_index).all():
        raise ValueError(
            "Index is not contained within new index. This can often be "
            "resolved by using larger partitions, or unambiguous "
            "frequencies: 'Q', 'A'..."

    return out.reindex(new_index, fill_value=fill_value)

def _resample_bin_and_out_divs(divisions, rule, closed="left", label="left"):
    rule = pd.tseries.frequencies.to_offset(rule)
    g = pd.Grouper(freq=rule, how="count", closed=closed, label=label)

    # Determine bins to apply `how` to. Disregard labeling scheme.
    divs = pd.Series(range(len(divisions)), index=divisions)
    temp = divs.resample(rule, closed=closed, label="left").count()
    tempdivs = temp.loc[temp > 0].index

    # Cleanup closed == 'right' and label == 'right'
    res = pd.offsets.Nano() if isinstance(rule, pd.offsets.Tick) else pd.offsets.Day()
    if g.closed == "right":
        newdivs = tempdivs + res
        newdivs = tempdivs
    if g.label == "right":
        outdivs = tempdivs + rule
        outdivs = tempdivs

    newdivs = methods.tolist(newdivs)
    outdivs = methods.tolist(outdivs)

    # Adjust ends
    if newdivs[0] < divisions[0]:
        newdivs[0] = divisions[0]
    if newdivs[-1] < divisions[-1]:
        if len(newdivs) < len(divs):
            setter = lambda a, val: a.append(val)
            setter = lambda a, val: a.__setitem__(-1, val)
        setter(newdivs, divisions[-1] + res)
        if outdivs[-1] > divisions[-1]:
            setter(outdivs, outdivs[-1])
        elif outdivs[-1] < divisions[-1]:
            setter(outdivs, temp.index[-1])

    return tuple(map(pd.Timestamp, newdivs)), tuple(map(pd.Timestamp, outdivs))

[docs]class Resampler: """Class for resampling timeseries data. This class is commonly encountered when using ``obj.resample(...)`` which return ``Resampler`` objects. Parameters ---------- obj : Dask DataFrame or Series Data to be resampled. rule : str, tuple, datetime.timedelta, DateOffset or None The offset string or object representing the target conversion. kwargs : optional Keyword arguments passed to underlying pandas resampling function. Returns ------- Resampler instance of the appropriate type """
[docs] def __init__(self, obj, rule, **kwargs): if not obj.known_divisions: msg = ( "Can only resample dataframes with known divisions\n" "See\n" "for more information." ) raise ValueError(msg) self.obj = obj self._rule = pd.tseries.frequencies.to_offset(rule) self._kwargs = kwargs
def _agg( self, how, meta=None, fill_value=np.nan, how_args=(), how_kwargs=None, ): """Aggregate using one or more operations Parameters ---------- how : str Name of aggregation operation fill_value : scalar, optional Value to use for missing values, applied during upsampling. Default is NaN. how_args : optional Positional arguments for aggregation operation. how_kwargs : optional Keyword arguments for aggregation operation. Returns ------- Dask DataFrame or Series """ if how_kwargs is None: how_kwargs = {} rule = self._rule kwargs = self._kwargs name = "resample-" + tokenize( self.obj, rule, kwargs, how, *how_args, **how_kwargs ) # Create a grouper to determine closed and label conventions newdivs, outdivs = _resample_bin_and_out_divs( self.obj.divisions, rule, **kwargs ) # Repartition divs into bins. These won't match labels after mapping partitioned = self.obj.repartition(newdivs, force=True) keys = partitioned.__dask_keys__() dsk = {} args = zip(keys, outdivs, outdivs[1:], ["left"] * (len(keys) - 1) + [None]) for i, (k, s, e, c) in enumerate(args): dsk[(name, i)] = ( _resample_series, k, s, e, c, rule, kwargs, how, fill_value, list(how_args), how_kwargs, ) # Infer output metadata meta_r = self.obj._meta_nonempty.resample(self._rule, **self._kwargs) meta = getattr(meta_r, how)(*how_args, **how_kwargs) graph = HighLevelGraph.from_collections(name, dsk, dependencies=[partitioned]) if isinstance(meta, pd.DataFrame): return DataFrame(graph, name, meta, outdivs) return Series(graph, name, meta, outdivs)
[docs] @derived_from(pd_Resampler) def agg(self, agg_funcs, *args, **kwargs): return self._agg("agg", how_args=(agg_funcs,) + args, how_kwargs=kwargs)
[docs] @derived_from(pd_Resampler) def count(self): return self._agg("count", fill_value=0)
[docs] @derived_from(pd_Resampler) def first(self): return self._agg("first")
[docs] @derived_from(pd_Resampler) def last(self): return self._agg("last")
[docs] @derived_from(pd_Resampler) def mean(self): return self._agg("mean")
[docs] @derived_from(pd_Resampler) def min(self): return self._agg("min")
[docs] @derived_from(pd_Resampler) def median(self): return self._agg("median")
[docs] @derived_from(pd_Resampler) def max(self): return self._agg("max")
[docs] @derived_from(pd_Resampler) def nunique(self): return self._agg("nunique", fill_value=0)
[docs] @derived_from(pd_Resampler) def ohlc(self): return self._agg("ohlc")
[docs] @derived_from(pd_Resampler) def prod(self): return self._agg("prod")
[docs] @derived_from(pd_Resampler) def sem(self): return self._agg("sem")
[docs] @derived_from(pd_Resampler) def std(self): return self._agg("std")
[docs] @derived_from(pd_Resampler) def size(self): return self._agg("size", fill_value=0)
[docs] @derived_from(pd_Resampler) def sum(self): return self._agg("sum", fill_value=0)
[docs] @derived_from(pd_Resampler) def var(self): return self._agg("var")
[docs] @derived_from(pd_Resampler) def quantile(self): return self._agg("quantile")