dask.dataframe.Series.dropna
dask.dataframe.Series.dropna¶
- Series.dropna()[source]¶
Return a new Series with missing values removed.
This docstring was copied from pandas.core.series.Series.dropna.
Some inconsistencies with the Dask version may exist.
See the User Guide for more on which values are considered missing, and how to work with missing data.
- Parameters
- axis{0 or ‘index’} (Not supported in Dask)
Unused. Parameter needed for compatibility with DataFrame.
- inplacebool, default False (Not supported in Dask)
If True, do operation inplace and return None.
- howstr, optional (Not supported in Dask)
Not in use. Kept for compatibility.
- ignore_indexbool, default
False
(Not supported in Dask) If
True
, the resulting axis will be labeled 0, 1, …, n - 1.New in version 2.0.0.
- Returns
- Series or None
Series with NA entries dropped from it or None if
inplace=True
.
See also
Series.isna
Indicate missing values.
Series.notna
Indicate existing (non-missing) values.
Series.fillna
Replace missing values.
DataFrame.dropna
Drop rows or columns which contain NA values.
Index.dropna
Drop missing indices.
Examples
>>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64
Drop NA values from a Series.
>>> ser.dropna() 0 1.0 1 2.0 dtype: float64
Empty strings are not considered NA values.
None
is considered an NA value.>>> ser = pd.Series([np.nan, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object