dask_expr._collection.Series.mean
dask_expr._collection.Series.mean¶
- Series.mean(axis=0, skipna=True, numeric_only=False, split_every=False, **kwargs)¶
Return the mean of the values over the requested axis.
This docstring was copied from pandas.core.frame.DataFrame.mean.
Some inconsistencies with the Dask version may exist.
- Parameters
- axis{index (0), columns (1)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
For DataFrames, specifying
axis=None
will apply the aggregation across both axes.New in version 2.0.0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
- Returns
- Series or scalar
Examples
>>> s = pd.Series([1, 2, 3]) >>> s.mean() 2.0
With a DataFrame
>>> df = pd.DataFrame({'a': [1, 2], 'b': [2, 3]}, index=['tiger', 'zebra']) >>> df a b tiger 1 2 zebra 2 3 >>> df.mean() a 1.5 b 2.5 dtype: float64
Using axis=1
>>> df.mean(axis=1) tiger 1.5 zebra 2.5 dtype: float64
In this case, numeric_only should be set to True to avoid getting an error.
>>> df = pd.DataFrame({'a': [1, 2], 'b': ['T', 'Z']}, ... index=['tiger', 'zebra']) >>> df.mean(numeric_only=True) a 1.5 dtype: float64