Source code for dask.dataframe.groupby

from __future__ import annotations

import collections
import itertools as it
import operator
import uuid
import warnings
from functools import partial, wraps
from numbers import Integral

import numpy as np
import pandas as pd

from dask.base import is_dask_collection, tokenize
from dask.core import flatten
from dask.dataframe._compat import (
    PANDAS_GE_140,
    PANDAS_GE_150,
    PANDAS_GE_200,
    PANDAS_GE_210,
    PANDAS_GE_220,
    PANDAS_GE_300,
    check_groupby_axis_deprecation,
    check_numeric_only_deprecation,
    check_observed_deprecation,
)
from dask.dataframe.core import (
    GROUP_KEYS_DEFAULT,
    DataFrame,
    Series,
    _convert_to_numeric,
    _determine_split_out_shuffle,
    _extract_meta,
    _Frame,
    aca,
    map_partitions,
    new_dd_object,
    split_out_on_index,
)
from dask.dataframe.dispatch import grouper_dispatch
from dask.dataframe.methods import concat, drop_columns
from dask.dataframe.utils import (
    get_numeric_only_kwargs,
    insert_meta_param_description,
    is_dataframe_like,
    is_index_like,
    is_series_like,
    make_meta,
    raise_on_meta_error,
)
from dask.highlevelgraph import HighLevelGraph
from dask.typing import no_default
from dask.utils import (
    M,
    _deprecated,
    _deprecated_kwarg,
    derived_from,
    funcname,
    itemgetter,
)

if PANDAS_GE_140:
    from pandas.core.apply import reconstruct_func, validate_func_kwargs

# #############################################
#
# GroupBy implementation notes
#
# Dask groupby supports reductions, i.e., mean, sum and alike, and apply. The
# former do not shuffle the data and are efficiently implemented as tree
# reductions. The latter is implemented by shuffling the underlying partitions
# such that all items of a group can be found in the same partition.
#
# The argument to ``.groupby`` (``by``), can be a ``str``, ``dd.DataFrame``,
# ``dd.Series``, or a list thereof. In operations on the grouped object, the
# divisions of the the grouped object and the items of ``by`` have to align.
# Currently, there is no support to shuffle the ``by`` values as part of the
# groupby operation. Therefore, the alignment has to be guaranteed by the
# caller.
#
# To operate on matching partitions, most groupby operations exploit the
# corresponding support in ``apply_concat_apply``. Specifically, this function
# operates on matching partitions of frame-like objects passed as varargs.
#
# After the initial chunk step, ``by``` is implicitly passed along to
# subsequent operations as the index of the partitions. Groupby operations on
# the individual partitions can then access ``by`` via the ``levels``
# parameter of the ``groupby`` function. The correct argument is determined by
# the ``_determine_levels`` function.
#
# To minimize overhead, any ``by`` that is a series contained within the
# dataframe is passed as a column key. This transformation is implemented as
# ``_normalize_by``.
#
# #############################################

NUMERIC_ONLY_NOT_IMPLEMENTED = [
    "mean",
    "std",
    "var",
]


def _determine_levels(by):
    """Determine the correct levels argument to groupby."""
    if isinstance(by, (tuple, list)) and len(by) > 1:
        return list(range(len(by)))
    else:
        return 0


def _normalize_by(df, by):
    """Replace series with column names wherever possible."""
    if not isinstance(df, DataFrame):
        return by

    elif isinstance(by, list):
        return [_normalize_by(df, col) for col in by]

    elif is_series_like(by) and by.name in df.columns and by._name == df[by.name]._name:
        return by.name

    elif (
        isinstance(by, DataFrame)
        and set(by.columns).issubset(df.columns)
        and by._name == df[by.columns]._name
    ):
        return list(by.columns)

    else:
        return by


def _maybe_slice(grouped, columns):
    """
    Slice columns if grouped is pd.DataFrameGroupBy
    """
    # FIXME: update with better groupby object detection (i.e.: ngroups, get_group)
    if "groupby" in type(grouped).__name__.lower():
        if columns is not None:
            if isinstance(columns, (tuple, list, set, pd.Index)):
                columns = list(columns)
            return grouped[columns]
    return grouped


def _is_aligned(df, by):
    """Check if ``df`` and ``by`` have aligned indices"""
    if is_series_like(by) or is_dataframe_like(by):
        return df.index.equals(by.index)
    elif isinstance(by, (list, tuple)):
        return all(_is_aligned(df, i) for i in by)
    else:
        return True


def _groupby_raise_unaligned(df, convert_by_to_list=True, **kwargs):
    """Groupby, but raise if df and `by` key are unaligned.

    Pandas supports grouping by a column that doesn't align with the input
    frame/series/index. However, the reindexing does not seem to be
    threadsafe, and can result in incorrect results. Since grouping by an
    unaligned key is generally a bad idea, we just error loudly in dask.

    For more information see pandas GH issue #15244 and Dask GH issue #1876."""
    by = kwargs.get("by", None)
    if by is not None and not _is_aligned(df, by):
        msg = (
            "Grouping by an unaligned column is unsafe and unsupported.\n"
            "This can be caused by filtering only one of the object or\n"
            "grouping key. For example, the following works in pandas,\n"
            "but not in dask:\n"
            "\n"
            "df[df.foo < 0].groupby(df.bar)\n"
            "\n"
            "This can be avoided by either filtering beforehand, or\n"
            "passing in the name of the column instead:\n"
            "\n"
            "df2 = df[df.foo < 0]\n"
            "df2.groupby(df2.bar)\n"
            "# or\n"
            "df[df.foo < 0].groupby('bar')\n"
            "\n"
            "For more information see dask GH issue #1876."
        )
        raise ValueError(msg)
    elif by is not None and len(by) and convert_by_to_list:
        # since we're coming through apply, `by` will be a tuple.
        # Pandas treats tuples as a single key, and lists as multiple keys
        # We want multiple keys
        if isinstance(by, str):
            by = [by]
        kwargs.update(by=list(by))
    with check_observed_deprecation():
        return df.groupby(**kwargs)


def _groupby_slice_apply(
    df,
    grouper,
    key,
    func,
    *args,
    group_keys=GROUP_KEYS_DEFAULT,
    dropna=None,
    observed=None,
    **kwargs,
):
    # No need to use raise if unaligned here - this is only called after
    # shuffling, which makes everything aligned already
    dropna = {"dropna": dropna} if dropna is not None else {}
    observed = {"observed": observed} if observed is not None else {}
    g = df.groupby(grouper, group_keys=group_keys, **observed, **dropna)
    if key:
        g = g[key]
    return g.apply(func, *args, **kwargs)


def _groupby_slice_transform(
    df,
    grouper,
    key,
    func,
    *args,
    group_keys=GROUP_KEYS_DEFAULT,
    dropna=None,
    observed=None,
    **kwargs,
):
    # No need to use raise if unaligned here - this is only called after
    # shuffling, which makes everything aligned already
    dropna = {"dropna": dropna} if dropna is not None else {}
    observed = {"observed": observed} if observed is not None else {}
    g = df.groupby(grouper, group_keys=group_keys, **observed, **dropna)
    if key:
        g = g[key]

    # Cannot call transform on an empty dataframe
    if len(df) == 0:
        return g.apply(func, *args, **kwargs)

    return g.transform(func, *args, **kwargs)


def _groupby_slice_shift(
    df,
    grouper,
    key,
    shuffled,
    group_keys=GROUP_KEYS_DEFAULT,
    dropna=None,
    observed=None,
    **kwargs,
):
    # No need to use raise if unaligned here - this is only called after
    # shuffling, which makes everything aligned already
    dropna = {"dropna": dropna} if dropna is not None else {}
    observed = {"observed": observed} if observed is not None else {}
    if shuffled:
        df = df.sort_index()
    g = df.groupby(grouper, group_keys=group_keys, **observed, **dropna)
    if key:
        g = g[key]
    with check_groupby_axis_deprecation():
        result = g.shift(**kwargs)
    return result


def _groupby_get_group(df, by_key, get_key, columns):
    # SeriesGroupBy may pass df which includes group key
    grouped = _groupby_raise_unaligned(df, by=by_key, convert_by_to_list=False)

    try:
        if is_dataframe_like(df):
            grouped = grouped[columns]
        return grouped.get_group(get_key)
    except KeyError:
        # to create empty DataFrame/Series, which has the same
        # dtype as the original
        if is_dataframe_like(df):
            # may be SeriesGroupBy
            df = df[columns]
        return df.iloc[0:0]


def numeric_only_deprecate_default(func):
    """Decorator for methods that should warn when numeric_only is default"""

    @wraps(func)
    def wrapper(self, *args, **kwargs):
        if isinstance(self, DataFrameGroupBy):
            numeric_only = kwargs.get("numeric_only", no_default)
            # Prior to `pandas=1.5`, `numeric_only` support wasn't uniformly supported
            # in pandas. We don't support `numeric_only=False` in this case.
            if not PANDAS_GE_150 and numeric_only is False:
                raise NotImplementedError(
                    "'numeric_only=False' is not implemented in Dask."
                )
            if PANDAS_GE_150 and not PANDAS_GE_200 and not self._all_numeric():
                if numeric_only is no_default:
                    warnings.warn(
                        "The default value of numeric_only will be changed to False in "
                        "the future when using dask with pandas 2.0",
                        FutureWarning,
                    )
                elif numeric_only is False and funcname(func) in ("sum", "prod"):
                    warnings.warn(
                        "Dropping invalid columns is deprecated. In a future version, a TypeError will be raised. "
                        f"Before calling .{funcname(func)}, select only columns which should be valid for the function",
                        FutureWarning,
                    )

        return func(self, *args, **kwargs)

    return wrapper


def numeric_only_not_implemented(func):
    """Decorator for methods that can't handle numeric_only=False"""

    @wraps(func)
    def wrapper(self, *args, **kwargs):
        if isinstance(self, DataFrameGroupBy):
            maybe_raise = not (
                func.__name__ == "agg"
                and len(args) > 0
                and args[0] not in NUMERIC_ONLY_NOT_IMPLEMENTED
            )
            if maybe_raise:
                numeric_only = kwargs.get("numeric_only", no_default)
                # Prior to `pandas=1.5`, `numeric_only` support wasn't uniformly supported
                # in pandas. We don't support `numeric_only=False` in this case.
                if not PANDAS_GE_150 and numeric_only is False:
                    raise NotImplementedError(
                        "'numeric_only=False' is not implemented in Dask."
                    )
                if not self._all_numeric():
                    if numeric_only is False or (
                        PANDAS_GE_200 and numeric_only is no_default
                    ):
                        raise NotImplementedError(
                            "'numeric_only=False' is not implemented in Dask."
                        )
                    if (
                        PANDAS_GE_150
                        and not PANDAS_GE_200
                        and numeric_only is no_default
                    ):
                        warnings.warn(
                            "The default value of numeric_only will be changed to False "
                            "in the future when using dask with pandas 2.0",
                            FutureWarning,
                        )
        return func(self, *args, **kwargs)

    return wrapper


###############################################################
# Aggregation
###############################################################


[docs]class Aggregation: """User defined groupby-aggregation. This class allows users to define their own custom aggregation in terms of operations on Pandas dataframes in a map-reduce style. You need to specify what operation to do on each chunk of data, how to combine those chunks of data together, and then how to finalize the result. See :ref:`dataframe.groupby.aggregate` for more. Parameters ---------- name : str the name of the aggregation. It should be unique, since intermediate result will be identified by this name. chunk : callable a function that will be called with the grouped column of each partition. It can either return a single series or a tuple of series. The index has to be equal to the groups. agg : callable a function that will be called to aggregate the results of each chunk. Again the argument(s) will be grouped series. If ``chunk`` returned a tuple, ``agg`` will be called with all of them as individual positional arguments. finalize : callable an optional finalizer that will be called with the results from the aggregation. Examples -------- We could implement ``sum`` as follows: >>> custom_sum = dd.Aggregation( ... name='custom_sum', ... chunk=lambda s: s.sum(), ... agg=lambda s0: s0.sum() ... ) # doctest: +SKIP >>> df.groupby('g').agg(custom_sum) # doctest: +SKIP We can implement ``mean`` as follows: >>> custom_mean = dd.Aggregation( ... name='custom_mean', ... chunk=lambda s: (s.count(), s.sum()), ... agg=lambda count, sum: (count.sum(), sum.sum()), ... finalize=lambda count, sum: sum / count, ... ) # doctest: +SKIP >>> df.groupby('g').agg(custom_mean) # doctest: +SKIP Though of course, both of these are built-in and so you don't need to implement them yourself. """
[docs] def __init__(self, name, chunk, agg, finalize=None): self.chunk = chunk self.agg = agg self.finalize = finalize self.__name__ = name
def _groupby_aggregate( df, aggfunc=None, levels=None, dropna=None, sort=False, observed=None, **kwargs ): dropna = {"dropna": dropna} if dropna is not None else {} observed = {"observed": observed} if observed is not None else {} with check_observed_deprecation(): grouped = df.groupby(level=levels, sort=sort, **observed, **dropna) # we emit a warning earlier in stack about default numeric_only being deprecated, # so there's no need to propagate the warning that pandas emits as well with check_numeric_only_deprecation(): return aggfunc(grouped, **kwargs) def _groupby_aggregate_spec( df, spec, levels=None, dropna=None, sort=False, observed=None, **kwargs ): """ A simpler version of _groupby_aggregate that just calls ``aggregate`` using the user-provided spec. """ dropna = {"dropna": dropna} if dropna is not None else {} observed = {"observed": observed} if observed is not None else {} return df.groupby(level=levels, sort=sort, **observed, **dropna).aggregate( spec, **kwargs ) def _non_agg_chunk(df, *by, key, dropna=None, observed=None, **kwargs): """ A non-aggregation agg function. This simulates the behavior of an initial partitionwise aggregation, but doesn't actually aggregate or throw away any data. """ if is_series_like(df): # Handle a series-like groupby. `by` could be columns that are not the series, # but are like-indexed, so we handle that case by temporarily converting to # a dataframe, then setting the index. result = df.to_frame().set_index(by[0] if len(by) == 1 else list(by))[df.name] else: # Handle a frame-like groupby. result = df.set_index(list(by)) if isinstance(key, (tuple, list, set, pd.Index)): key = list(key) result = result[key] # If observed is False, we have to check for categorical indices and possibly enrich # them with unobserved values. This function is intended as an initial partitionwise # aggregation, so you might expect that we could enrich the frame with unobserved # values at the end. However, if you have multiple output partitions, that results # in duplicated unobserved values in each partition. So we have to do this step # at the start before any shuffling occurs so that we can consolidate all of the # unobserved values in a single partition. if observed is False: has_categoricals = False # Search for categorical indices and get new index objects that have all the # categories in them. if isinstance(result.index, pd.CategoricalIndex): has_categoricals = True full_index = result.index.categories.copy().rename(result.index.name) elif isinstance(result.index, pd.MultiIndex) and any( isinstance(level, pd.CategoricalIndex) for level in result.index.levels ): has_categoricals = True full_index = pd.MultiIndex.from_product( result.index.levels, names=result.index.names ) if has_categoricals: # If we found any categoricals, append unobserved values to the end of the # frame. new_cats = full_index[~full_index.isin(result.index)] empty_data = { c: pd.Series(index=new_cats, dtype=result[c].dtype) for c in result.columns } empty = pd.DataFrame(empty_data) result = pd.concat([result, empty]) return result def _apply_chunk(df, *by, dropna=None, observed=None, **kwargs): func = kwargs.pop("chunk") columns = kwargs.pop("columns") dropna = {"dropna": dropna} if dropna is not None else {} observed = {"observed": observed} if observed is not None else {} g = _groupby_raise_unaligned(df, by=by, **observed, **dropna) if is_series_like(df) or columns is None: return func(g, **kwargs) else: if isinstance(columns, (tuple, list, set, pd.Index)): columns = list(columns) return func(g[columns], **kwargs) def _var_chunk(df, *by, numeric_only=no_default, observed=False, dropna=True): numeric_only_kwargs = get_numeric_only_kwargs(numeric_only) if is_series_like(df): df = df.to_frame() df = df.copy() g = _groupby_raise_unaligned(df, by=by, observed=observed, dropna=dropna) with check_numeric_only_deprecation(): x = g.sum(**numeric_only_kwargs) n = g[x.columns].count().rename(columns=lambda c: (c, "-count")) cols = x.columns df[cols] = df[cols] ** 2 g2 = _groupby_raise_unaligned(df, by=by, observed=observed, dropna=dropna) with check_numeric_only_deprecation(): x2 = g2.sum(**numeric_only_kwargs).rename(columns=lambda c: (c, "-x2")) return concat([x, x2, n], axis=1) def _var_combine(g, levels, sort=False): return g.groupby(level=levels, sort=sort).sum() def _var_agg( g, levels, ddof, sort=False, numeric_only=no_default, observed=False, dropna=True ): numeric_only_kwargs = get_numeric_only_kwargs(numeric_only) g = g.groupby(level=levels, sort=sort, observed=observed, dropna=dropna).sum( **numeric_only_kwargs ) nc = len(g.columns) x = g[g.columns[: nc // 3]] # chunks columns are tuples (value, name), so we just keep the value part x2 = g[g.columns[nc // 3 : 2 * nc // 3]].rename(columns=lambda c: c[0]) n = g[g.columns[-nc // 3 :]].rename(columns=lambda c: c[0]) # TODO: replace with _finalize_var? result = x2 - x**2 / n div = n - ddof div[div < 0] = 0 result /= div result[(n - ddof) == 0] = np.nan assert is_dataframe_like(result) result[result < 0] = 0 # avoid rounding errors that take us to zero return result def _cov_combine(g, levels): return g def _cov_finalizer(df, cols, std=False): vals = [] num_elements = len(list(it.product(cols, repeat=2))) num_cols = len(cols) vals = list(range(num_elements)) col_idx_mapping = dict(zip(cols, range(num_cols))) for i, j in it.combinations_with_replacement(df[cols].columns, 2): x = col_idx_mapping[i] y = col_idx_mapping[j] idx = x + num_cols * y mul_col = f"{i}{j}" ni = df["%s-count" % i] nj = df["%s-count" % j] n = np.sqrt(ni * nj) div = n - 1 div[div < 0] = 0 val = (df[mul_col] - df[i] * df[j] / n).values[0] / div.values[0] if std: ii = f"{i}{i}" jj = f"{j}{j}" std_val_i = (df[ii] - (df[i] ** 2) / ni).values[0] / div.values[0] std_val_j = (df[jj] - (df[j] ** 2) / nj).values[0] / div.values[0] sqrt_val = np.sqrt(std_val_i * std_val_j) if sqrt_val == 0: val = np.nan else: val = val / sqrt_val vals[idx] = val if i != j: idx = num_cols * x + y vals[idx] = val level_1 = cols index = pd.MultiIndex.from_product([level_1, level_1]) return pd.Series(vals, index=index) def _mul_cols(df, cols): """Internal function to be used with apply to multiply each column in a dataframe by every other column a b c -> a*a, a*b, b*b, b*c, c*c """ _df = df.__class__() for i, j in it.combinations_with_replacement(cols, 2): col = f"{i}{j}" _df[col] = df[i] * df[j] # Fix index in a groupby().apply() context # https://github.com/dask/dask/issues/8137 # https://github.com/pandas-dev/pandas/issues/43568 # Make sure index dtype is int (even if _df is empty) # https://github.com/dask/dask/pull/9701 _df.index = np.zeros(len(_df), dtype=int) return _df def _cov_chunk(df, *by, numeric_only=no_default): """Covariance Chunk Logic Parameters ---------- df : Pandas.DataFrame std : bool, optional When std=True we are calculating with Correlation Returns ------- tuple Processed X, Multiplied Cols, """ numeric_only_kwargs = get_numeric_only_kwargs(numeric_only) if is_series_like(df): df = df.to_frame() df = df.copy() if numeric_only is False: dt_df = df.select_dtypes(include=["datetime", "timedelta"]) for col in dt_df.columns: df[col] = _convert_to_numeric(dt_df[col], True) # mapping columns to str(numerical) values allows us to easily handle # arbitrary column names (numbers, string, empty strings) col_mapping = collections.OrderedDict() for i, c in enumerate(df.columns): col_mapping[c] = str(i) df = df.rename(columns=col_mapping) cols = df._get_numeric_data().columns # when grouping by external series don't exclude columns is_mask = any(is_series_like(s) for s in by) if not is_mask: by = [col_mapping[k] for k in by] cols = cols.difference(pd.Index(by)) g = _groupby_raise_unaligned(df, by=by) x = g.sum(**numeric_only_kwargs) include_groups = {"include_groups": False} if PANDAS_GE_220 else {} mul = g.apply(_mul_cols, cols=cols, **include_groups).reset_index( level=-1, drop=True ) n = g[x.columns].count().rename(columns=lambda c: f"{c}-count") return (x, mul, n, col_mapping) def _cov_agg(_t, levels, ddof, std=False, sort=False): sums = [] muls = [] counts = [] # sometime we get a series back from concat combiner t = list(_t) cols = t[0][0].columns for x, mul, n, col_mapping in t: sums.append(x) muls.append(mul) counts.append(n) col_mapping = col_mapping total_sums = concat(sums).groupby(level=levels, sort=sort).sum() total_muls = concat(muls).groupby(level=levels, sort=sort).sum() total_counts = concat(counts).groupby(level=levels).sum() result = ( concat([total_sums, total_muls, total_counts], axis=1) .groupby(level=levels) .apply(_cov_finalizer, cols=cols, std=std) ) inv_col_mapping = {v: k for k, v in col_mapping.items()} idx_vals = result.index.names idx_mapping = list() # when index is None we probably have selected a particular column # df.groupby('a')[['b']].cov() if len(idx_vals) == 1 and all(n is None for n in idx_vals): idx_vals = list(inv_col_mapping.keys() - set(total_sums.columns)) for val in idx_vals: idx_name = inv_col_mapping.get(val, val) idx_mapping.append(idx_name) if len(result.columns.levels[0]) < len(col_mapping): # removing index from col_mapping (produces incorrect multiindexes) try: col_mapping.pop(idx_name) except KeyError: # when slicing the col_map will not have the index pass keys = list(col_mapping.keys()) for level in range(len(result.columns.levels)): result.columns = result.columns.set_levels(keys, level=level) result.index.set_names(idx_mapping, inplace=True) # stacking can lead to a sorted index if PANDAS_GE_300: s_result = result.stack() else: s_result = result.stack(dropna=False) assert is_dataframe_like(s_result) return s_result ############################################################### # nunique ############################################################### def _nunique_df_chunk(df, *by, **kwargs): name = kwargs.pop("name") try: # This is a lot faster but kind of a pain to implement when by # has a boolean series in it. return df.drop_duplicates(subset=list(by) + [name]).set_index(list(by)) except Exception: pass group_keys = {} if PANDAS_GE_150: group_keys["group_keys"] = True g = _groupby_raise_unaligned(df, by=by, **group_keys) if len(df) > 0: grouped = g[name].unique().explode().to_frame() else: # Manually create empty version, since groupby-apply for empty frame # results in df with no columns grouped = g[[name]].nunique() grouped = grouped.astype(df.dtypes[grouped.columns].to_dict()) return grouped def _nunique_df_combine(df, levels, sort=False): result = ( df.groupby(level=levels, sort=sort, observed=True)[df.columns[0]] .unique() .explode() .to_frame() ) return result def _nunique_df_aggregate(df, levels, name, sort=False): return df.groupby(level=levels, sort=sort, observed=True)[name].nunique() def _nunique_series_chunk(df, *by, **_ignored_): # convert series to data frame, then hand over to dataframe code path assert is_series_like(df) df = df.to_frame() kwargs = dict(name=df.columns[0], levels=_determine_levels(by)) return _nunique_df_chunk(df, *by, **kwargs) ############################################################### # Aggregate support # # Aggregate is implemented as: # # 1. group-by-aggregate all partitions into intermediate values # 2. collect all partitions into a single partition # 3. group-by-aggregate the result into intermediate values # 4. transform all intermediate values into the result # # In Step 1 and 3 the dataframe is grouped on the same columns. # ############################################################### def _make_agg_id(func, column): return f"{func!s}-{column!s}-{tokenize(func, column)}" def _normalize_spec(spec, non_group_columns): """ Return a list of ``(result_column, func, input_column)`` tuples. Spec can be - a function - a list of functions - a dictionary that maps input-columns to functions - a dictionary that maps input-columns to a lists of functions - a dictionary that maps input-columns to a dictionaries that map output-columns to functions. The non-group columns are a list of all column names that are not used in the groupby operation. Usually, the result columns are mutli-level names, returned as tuples. If only a single function is supplied or dictionary mapping columns to single functions, simple names are returned as strings (see the first two examples below). Examples -------- >>> _normalize_spec('mean', ['a', 'b', 'c']) [('a', 'mean', 'a'), ('b', 'mean', 'b'), ('c', 'mean', 'c')] >>> spec = collections.OrderedDict([('a', 'mean'), ('b', 'count')]) >>> _normalize_spec(spec, ['a', 'b', 'c']) [('a', 'mean', 'a'), ('b', 'count', 'b')] >>> _normalize_spec(['var', 'mean'], ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'var'), 'var', 'a'), (('a', 'mean'), 'mean', 'a'), \ (('b', 'var'), 'var', 'b'), (('b', 'mean'), 'mean', 'b'), \ (('c', 'var'), 'var', 'c'), (('c', 'mean'), 'mean', 'c')] >>> spec = collections.OrderedDict([('a', 'mean'), ('b', ['sum', 'count'])]) >>> _normalize_spec(spec, ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'mean'), 'mean', 'a'), (('b', 'sum'), 'sum', 'b'), \ (('b', 'count'), 'count', 'b')] >>> spec = collections.OrderedDict() >>> spec['a'] = ['mean', 'size'] >>> spec['b'] = collections.OrderedDict([('e', 'count'), ('f', 'var')]) >>> _normalize_spec(spec, ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'mean'), 'mean', 'a'), (('a', 'size'), 'size', 'a'), \ (('b', 'e'), 'count', 'b'), (('b', 'f'), 'var', 'b')] """ if not isinstance(spec, dict): spec = collections.OrderedDict(zip(non_group_columns, it.repeat(spec))) res = [] if isinstance(spec, dict): for input_column, subspec in spec.items(): if isinstance(subspec, dict): res.extend( ((input_column, result_column), func, input_column) for result_column, func in subspec.items() ) else: if not isinstance(subspec, list): subspec = [subspec] res.extend( ((input_column, funcname(func)), func, input_column) for func in subspec ) else: raise ValueError(f"unsupported agg spec of type {type(spec)}") compounds = (list, tuple, dict) use_flat_columns = not any( isinstance(subspec, compounds) for subspec in spec.values() ) if use_flat_columns: res = [(input_col, func, input_col) for (_, func, input_col) in res] return res def _build_agg_args(spec): """ Create transformation functions for a normalized aggregate spec. Parameters ---------- spec: a list of (result-column, aggregation-function, input-column) triples. To work with all argument forms understood by pandas use ``_normalize_spec`` to normalize the argument before passing it on to ``_build_agg_args``. Returns ------- chunk_funcs: a list of (intermediate-column, function, keyword) triples that are applied on grouped chunks of the initial dataframe. agg_funcs: a list of (intermediate-column, functions, keyword) triples that are applied on the grouped concatenation of the preprocessed chunks. finalizers: a list of (result-column, function, keyword) triples that are applied after the ``agg_funcs``. They are used to create final results from intermediate representations. """ known_np_funcs = { np.min: "min", np.max: "max", np.median: "median", np.std: "std", np.var: "var", } # check that there are no name conflicts for a single input column by_name = {} for _, func, input_column in spec: key = funcname(known_np_funcs.get(func, func)), input_column by_name.setdefault(key, []).append((func, input_column)) for funcs in by_name.values(): if len(funcs) != 1: raise ValueError(f"conflicting aggregation functions: {funcs}") chunks = {} aggs = {} finalizers = [] # a partial may contain some arguments, pass them down # https://github.com/dask/dask/issues/9615 for result_column, func, input_column in spec: func_args = () func_kwargs = {} if isinstance(func, partial): func_args, func_kwargs = func.args, func.keywords if not isinstance(func, Aggregation): func = funcname(known_np_funcs.get(func, func)) impls = _build_agg_args_single( result_column, func, func_args, func_kwargs, input_column ) # overwrite existing result-columns, generate intermediates only once for spec in impls["chunk_funcs"]: chunks[spec[0]] = spec for spec in impls["aggregate_funcs"]: aggs[spec[0]] = spec finalizers.append(impls["finalizer"]) chunks = sorted(chunks.values()) aggs = sorted(aggs.values()) return chunks, aggs, finalizers def _build_agg_args_single(result_column, func, func_args, func_kwargs, input_column): simple_impl = { "sum": (M.sum, M.sum), "min": (M.min, M.min), "max": (M.max, M.max), "count": (M.count, M.sum), "size": (M.size, M.sum), "first": (M.first, M.first), "last": (M.last, M.last), "prod": (M.prod, M.prod), "median": ( None, M.median, ), # No chunk func for median, we can only take it when aggregating } if func in simple_impl.keys(): return _build_agg_args_simple( result_column, func, input_column, simple_impl[func] ) elif func == "var": return _build_agg_args_var( result_column, func, func_args, func_kwargs, input_column ) elif func == "std": return _build_agg_args_std( result_column, func, func_args, func_kwargs, input_column ) elif func == "mean": return _build_agg_args_mean(result_column, func, input_column) elif func == "list": return _build_agg_args_list(result_column, func, input_column) elif isinstance(func, Aggregation): return _build_agg_args_custom(result_column, func, input_column) else: raise ValueError(f"unknown aggregate {func}") def _build_agg_args_simple(result_column, func, input_column, impl_pair): intermediate = _make_agg_id(func, input_column) chunk_impl, agg_impl = impl_pair return dict( chunk_funcs=[ ( intermediate, _apply_func_to_column, dict(column=input_column, func=chunk_impl), ) ], aggregate_funcs=[ ( intermediate, _apply_func_to_column, dict(column=intermediate, func=agg_impl), ) ], finalizer=(result_column, itemgetter(intermediate), dict()), ) def _build_agg_args_var(result_column, func, func_args, func_kwargs, input_column): int_sum = _make_agg_id("sum", input_column) int_sum2 = _make_agg_id("sum2", input_column) int_count = _make_agg_id("count", input_column) # we don't expect positional args here if func_args: raise TypeError( f"aggregate function '{func}' doesn't support positional arguments, but got {func_args}" ) # and we only expect ddof=N in kwargs expected_kwargs = {"ddof"} unexpected_kwargs = func_kwargs.keys() - expected_kwargs if unexpected_kwargs: raise TypeError( f"aggregate function '{func}' supports {expected_kwargs} keyword arguments, but got {unexpected_kwargs}" ) return dict( chunk_funcs=[ (int_sum, _apply_func_to_column, dict(column=input_column, func=M.sum)), (int_count, _apply_func_to_column, dict(column=input_column, func=M.count)), (int_sum2, _compute_sum_of_squares, dict(column=input_column)), ], aggregate_funcs=[ (col, _apply_func_to_column, dict(column=col, func=M.sum)) for col in (int_sum, int_count, int_sum2) ], finalizer=( result_column, _finalize_var, dict( sum_column=int_sum, count_column=int_count, sum2_column=int_sum2, **func_kwargs, ), ), ) def _build_agg_args_std(result_column, func, func_args, func_kwargs, input_column): impls = _build_agg_args_var( result_column, func, func_args, func_kwargs, input_column ) result_column, _, kwargs = impls["finalizer"] impls["finalizer"] = (result_column, _finalize_std, kwargs) return impls def _build_agg_args_mean(result_column, func, input_column): int_sum = _make_agg_id("sum", input_column) int_count = _make_agg_id("count", input_column) return dict( chunk_funcs=[ (int_sum, _apply_func_to_column, dict(column=input_column, func=M.sum)), (int_count, _apply_func_to_column, dict(column=input_column, func=M.count)), ], aggregate_funcs=[ (col, _apply_func_to_column, dict(column=col, func=M.sum)) for col in (int_sum, int_count) ], finalizer=( result_column, _finalize_mean, dict(sum_column=int_sum, count_column=int_count), ), ) def _build_agg_args_list(result_column, func, input_column): intermediate = _make_agg_id("list", input_column) return dict( chunk_funcs=[ ( intermediate, _apply_func_to_column, dict(column=input_column, func=lambda s: s.apply(list)), ) ], aggregate_funcs=[ ( intermediate, _apply_func_to_column, dict( column=intermediate, func=lambda s0: s0.apply( lambda chunks: list(it.chain.from_iterable(chunks)) ), ), ) ], finalizer=(result_column, itemgetter(intermediate), dict()), ) def _build_agg_args_custom(result_column, func, input_column): col = _make_agg_id(funcname(func), input_column) if func.finalize is None: finalizer = (result_column, operator.itemgetter(col), dict()) else: finalizer = ( result_column, _apply_func_to_columns, dict(func=func.finalize, prefix=col), ) return dict( chunk_funcs=[ (col, _apply_func_to_column, dict(func=func.chunk, column=input_column)) ], aggregate_funcs=[ (col, _apply_func_to_columns, dict(func=func.agg, prefix=col)) ], finalizer=finalizer, ) def _groupby_apply_funcs(df, *by, **kwargs): """ Group a dataframe and apply multiple aggregation functions. Parameters ---------- df: pandas.DataFrame The dataframe to work on. by: list of groupers If given, they are added to the keyword arguments as the ``by`` argument. funcs: list of result-colum, function, keywordargument triples The list of functions that are applied on the grouped data frame. Has to be passed as a keyword argument. kwargs: All keyword arguments, but ``funcs``, are passed verbatim to the groupby operation of the dataframe Returns ------- aggregated: the aggregated dataframe. """ if len(by): # since we're coming through apply, `by` will be a tuple. # Pandas treats tuples as a single key, and lists as multiple keys # We want multiple keys kwargs.update(by=list(by)) funcs = kwargs.pop("funcs") grouped = _groupby_raise_unaligned(df, **kwargs) result = collections.OrderedDict() for result_column, func, func_kwargs in funcs: r = func(grouped, **func_kwargs) if isinstance(r, tuple): for idx, s in enumerate(r): result[f"{result_column}-{idx}"] = s else: result[result_column] = r if is_dataframe_like(df): return df.__class__(result) else: # Get the DataFrame type of this Series object return df.head(0).to_frame().__class__(result) def _compute_sum_of_squares(grouped, column): # Note: CuDF cannot use `groupby.apply`. # Need to unpack groupby to compute sum of squares with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "DataFrameGroupBy.grouper is deprecated and will be removed in a future version of pandas.", FutureWarning, ) # TODO: Avoid usage of grouper if hasattr(grouped, "grouper"): keys = grouped.grouper elif hasattr(grouped, "_grouper"): keys = grouped._grouper else: # Handle CuDF groupby object (different from pandas) keys = grouped.grouping.keys df = grouped.obj[column].pow(2) if column else grouped.obj.pow(2) return df.groupby(keys).sum() def _agg_finalize( df, aggregate_funcs, finalize_funcs, level, sort=False, arg=None, columns=None, is_series=False, **kwargs, ): # finish the final aggregation level df = _groupby_apply_funcs( df, funcs=aggregate_funcs, level=level, sort=sort, **kwargs ) # and finalize the result result = collections.OrderedDict() for result_column, func, finalize_kwargs in finalize_funcs: result[result_column] = func(df, **finalize_kwargs) result = df.__class__(result) if columns is not None: try: result = result[columns] except KeyError: pass if ( is_series and arg is not None and not isinstance(arg, (list, dict)) and result.ndim == 2 ): result = result[result.columns[0]] return result def _apply_func_to_column(df_like, column, func): if column is None: return func(df_like) return func(df_like[column]) def _apply_func_to_columns(df_like, prefix, func): if is_dataframe_like(df_like): columns = df_like.columns else: # handle GroupBy objects columns = df_like.obj.columns columns = sorted(col for col in columns if col.startswith(prefix)) columns = [df_like[col] for col in columns] return func(*columns) def _finalize_mean(df, sum_column, count_column): return df[sum_column] / df[count_column] def _finalize_var(df, count_column, sum_column, sum2_column, **kwargs): # arguments are being checked when building the finalizer. As of this moment, # we're only using ddof, and raising an error on other keyword args. ddof = kwargs.get("ddof", 1) n = df[count_column] x = df[sum_column] x2 = df[sum2_column] result = x2 - x**2 / n div = n - ddof div[div < 0] = 0 result /= div result[(n - ddof) == 0] = np.nan return result def _finalize_std(df, count_column, sum_column, sum2_column, **kwargs): result = _finalize_var(df, count_column, sum_column, sum2_column, **kwargs) return np.sqrt(result) def _cum_agg_aligned(part, cum_last, index, columns, func, initial): align = cum_last.reindex(part.set_index(index).index, fill_value=initial) align.index = part.index return func(part[columns], align) def _cum_agg_filled(a, b, func, initial): union = a.index.union(b.index) return func( a.reindex(union, fill_value=initial), b.reindex(union, fill_value=initial), fill_value=initial, ) def _cumcount_aggregate(a, b, fill_value=None): return a.add(b, fill_value=fill_value) + 1 def _drop_apply(group, *, by, what, **kwargs): # apply keeps the grouped-by columns, so drop them to stay consistent with pandas # groupby-fillna in pandas<2.2 return getattr(group.drop(columns=by), what)(**kwargs) def _aggregate_docstring(based_on=None): # Insert common groupby-aggregation docstring. # Use `based_on` parameter to add note about the # Pandas method the Dask version is based on. based_on_str = "\n" if based_on is None else f"\nBased on {based_on}\n" def wrapper(func): func.__doc__ = f"""Aggregate using one or more specified operations {based_on_str} Parameters ---------- arg : callable, str, list or dict, optional Aggregation spec. Accepted combinations are: - callable function - string function name - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` - dict of column names -> function, function name or list of such. - None only if named aggregation syntax is used split_every : int, optional Number of intermediate partitions that may be aggregated at once. This defaults to 8. If your intermediate partitions are likely to be small (either due to a small number of groups or a small initial partition size), consider increasing this number for better performance. split_out : int, optional Number of output partitions. Default is 1. shuffle : bool or str, optional Whether a shuffle-based algorithm should be used. A specific algorithm name may also be specified (e.g. ``"tasks"`` or ``"p2p"``). The shuffle-based algorithm is likely to be more efficient than ``shuffle=False`` when ``split_out>1`` and the number of unique groups is large (high cardinality). Default is ``False`` when ``split_out = 1``. When ``split_out > 1``, it chooses the algorithm set by the ``shuffle`` option in the dask config system, or ``"tasks"`` if nothing is set. kwargs: tuple or pd.NamedAgg, optional Used for named aggregations where the keywords are the output column names and the values are tuples where the first element is the input column name and the second element is the aggregation function. ``pandas.NamedAgg`` can also be used as the value. To use the named aggregation syntax, arg must be set to None. """ return func return wrapper class _GroupBy: """Superclass for DataFrameGroupBy and SeriesGroupBy Parameters ---------- obj: DataFrame or Series DataFrame or Series to be grouped by: str, list or Series The key for grouping slice: str, list The slice keys applied to GroupBy result group_keys: bool | None Passed to pandas.DataFrame.groupby() dropna: bool Whether to drop null values from groupby index sort: bool Passed along to aggregation methods. If allowed, the output aggregation will have sorted keys. observed: bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. """ def __init__( self, df, by=None, slice=None, group_keys=GROUP_KEYS_DEFAULT, dropna=None, sort=True, observed=None, ): by_ = by if isinstance(by, (tuple, list)) else [by] if any(isinstance(key, pd.Grouper) for key in by_): raise NotImplementedError("pd.Grouper is currently not supported by Dask.") # slicing key applied to _GroupBy instance self._slice = slice # Check if we can project columns projection = None if ( np.isscalar(self._slice) or isinstance(self._slice, (str, list, tuple)) or ( (is_index_like(self._slice) or is_series_like(self._slice)) and not is_dask_collection(self._slice) ) ): projection = set(by_).union( {self._slice} if (np.isscalar(self._slice) or isinstance(self._slice, str)) else self._slice ) projection = [c for c in df.columns if c in projection] assert isinstance(df, (DataFrame, Series)) self.group_keys = group_keys self.obj = df[projection] if projection else df # grouping key passed via groupby method self.by = _normalize_by(df, by) self.sort = sort partitions_aligned = all( item.npartitions == df.npartitions if isinstance(item, Series) else True for item in (self.by if isinstance(self.by, (tuple, list)) else [self.by]) ) if not partitions_aligned: raise NotImplementedError( "The grouped object and 'by' of the groupby must have the same divisions." ) if isinstance(self.by, list): by_meta = [ item._meta if isinstance(item, Series) else item for item in self.by ] elif isinstance(self.by, Series): by_meta = self.by._meta else: by_meta = self.by self.dropna = {} if dropna is not None: self.dropna["dropna"] = dropna # Hold off on setting observed by default: https://github.com/dask/dask/issues/6951 self.observed = {} if observed is not None: self.observed["observed"] = observed # raises a warning about observed=False with pandas>=2.1. # We want to raise here, and not later down the stack. self._meta = self.obj._meta.groupby( by_meta, group_keys=group_keys, **self.observed, **self.dropna ) @property @_deprecated() def index(self): return self.by @index.setter def index(self, value): self.by = value @property def _groupby_kwargs(self): return { "by": self.by, "group_keys": self.group_keys, **self.dropna, "sort": self.sort, **self.observed, } def __iter__(self): raise NotImplementedError( "Iteration of DataFrameGroupBy objects requires computing the groups which " "may be slow. You probably want to use 'apply' to execute a function for " "all the columns. To access individual groups, use 'get_group'. To list " "all the group names, use 'df[<group column>].unique().compute()'." ) @property def _meta_nonempty(self): """ Return a pd.DataFrameGroupBy / pd.SeriesGroupBy which contains sample data. """ sample = self.obj._meta_nonempty if isinstance(self.by, list): by_meta = [ item._meta_nonempty if isinstance(item, Series) else item for item in self.by ] elif isinstance(self.by, Series): by_meta = self.by._meta_nonempty else: by_meta = self.by with check_observed_deprecation(): grouped = sample.groupby( by_meta, group_keys=self.group_keys, **self.observed, **self.dropna, ) return _maybe_slice(grouped, self._slice) def _single_agg( self, token, func, aggfunc=None, meta=None, split_every=None, split_out=1, shuffle_method=None, chunk_kwargs=None, aggregate_kwargs=None, columns=None, ): """ Aggregation with a single function/aggfunc rather than a compound spec like in GroupBy.aggregate """ shuffle_method = _determine_split_out_shuffle(shuffle_method, split_out) if aggfunc is None: aggfunc = func if chunk_kwargs is None: chunk_kwargs = {} if aggregate_kwargs is None: aggregate_kwargs = {} if meta is None: with check_numeric_only_deprecation(): meta = func(self._meta_nonempty, **chunk_kwargs) if columns is None: columns = meta.name if is_series_like(meta) else meta.columns args = [self.obj] + (self.by if isinstance(self.by, list) else [self.by]) token = self._token_prefix + token levels = _determine_levels(self.by) if shuffle_method: return _shuffle_aggregate( args, chunk=_apply_chunk, chunk_kwargs={ "chunk": func, "columns": columns, **self.observed, **self.dropna, **chunk_kwargs, }, aggregate=_groupby_aggregate, aggregate_kwargs={ "aggfunc": aggfunc, "levels": levels, **self.observed, **self.dropna, **aggregate_kwargs, }, token=token, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, sort=self.sort, ) return aca( args, chunk=_apply_chunk, chunk_kwargs=dict( chunk=func, columns=columns, **self.observed, **chunk_kwargs, **self.dropna, ), aggregate=_groupby_aggregate, meta=meta, token=token, split_every=split_every, aggregate_kwargs=dict( aggfunc=aggfunc, levels=levels, **self.observed, **aggregate_kwargs, **self.dropna, ), split_out=split_out, split_out_setup=split_out_on_index, sort=self.sort, ) def _cum_agg(self, token, chunk, aggregate, initial, numeric_only=no_default): """Wrapper for cumulative groupby operation""" numeric_only_kwargs = get_numeric_only_kwargs(numeric_only) meta = chunk(self._meta, **numeric_only_kwargs) columns = meta.name if is_series_like(meta) else meta.columns by_cols = self.by if isinstance(self.by, list) else [self.by] # rename "by" columns internally # to fix cumulative operations on the same "by" columns # ref: https://github.com/dask/dask/issues/9313 if columns is not None: # Handle series case (only a single column, but can't # enlist above because that fails in pandas when # constructing meta later) grouping_columns = [columns] if is_series_like(meta) else columns to_rename = set(grouping_columns) & set(by_cols) by = [] for col in by_cols: if col in to_rename: suffix = str(uuid.uuid4()) self.obj = self.obj.assign(**{col + suffix: self.obj[col]}) by.append(col + suffix) else: by.append(col) else: by = by_cols name = self._token_prefix + token name_part = name + "-map" name_last = name + "-take-last" name_cum = name + "-cum-last" # cumulate each partitions cumpart_raw = map_partitions( _apply_chunk, self.obj, *by, chunk=chunk, columns=columns, token=name_part, meta=meta, **self.dropna, ) cumpart_raw_frame = ( cumpart_raw.to_frame() if is_series_like(meta) else cumpart_raw ) cumpart_ext = cumpart_raw_frame.assign( **{ i: self.obj[i] if np.isscalar(i) and i in getattr(self.obj, "columns", []) else self.obj.index for i in by } ) # Use pd.Grouper objects to specify that we are grouping by columns. # Otherwise, pandas will throw an ambiguity warning if the # DataFrame's index (self.obj.index) was included in the grouping # specification (self.by). See pandas #14432 grouper = grouper_dispatch(self._meta.obj) by_groupers = [grouper(key=ind) for ind in by] cumlast = map_partitions( _apply_chunk, cumpart_ext, *by_groupers, columns=0 if columns is None else columns, chunk=M.last, meta=meta, token=name_last, **self.dropna, ) # aggregate cumulated partitions and its previous last element _hash = tokenize(self, token, chunk, aggregate, initial) name += "-" + _hash name_cum += "-" + _hash dask = {} dask[(name, 0)] = (cumpart_raw._name, 0) for i in range(1, self.obj.npartitions): # store each cumulative step to graph to reduce computation if i == 1: dask[(name_cum, i)] = (cumlast._name, i - 1) else: # aggregate with previous cumulation results dask[(name_cum, i)] = ( _cum_agg_filled, (name_cum, i - 1), (cumlast._name, i - 1), aggregate, initial, ) dask[(name, i)] = ( _cum_agg_aligned, (cumpart_ext._name, i), (name_cum, i), by, 0 if columns is None else columns, aggregate, initial, ) dependencies = [cumpart_raw] if self.obj.npartitions > 1: dependencies += [cumpart_ext, cumlast] graph = HighLevelGraph.from_collections(name, dask, dependencies=dependencies) return new_dd_object( graph, name, chunk(self._meta, **numeric_only_kwargs), self.obj.divisions ) def compute(self, **kwargs): raise NotImplementedError( "DataFrameGroupBy does not allow compute method." "Please chain it with an aggregation method (like ``.mean()``) or get a " "specific group using ``.get_group()`` before calling ``compute()``" ) def _shuffle(self, meta): df = self.obj if isinstance(self.obj, Series): # Temporarily convert series to dataframe for shuffle df = df.to_frame("__series__") convert_back_to_series = True else: convert_back_to_series = False if isinstance(self.by, DataFrame): # add by columns to dataframe df2 = df.assign(**{"_by_" + c: self.by[c] for c in self.by.columns}) elif isinstance(self.by, Series): df2 = df.assign(_by=self.by) else: df2 = df df3 = df2.shuffle(on=self.by) # shuffle dataframe and index if isinstance(self.by, DataFrame): # extract by from dataframe cols = ["_by_" + c for c in self.by.columns] by2 = df3[cols] if is_dataframe_like(meta): df4 = df3.map_partitions(drop_columns, cols, meta.columns.dtype) else: df4 = df3.drop(cols, axis=1) elif isinstance(self.by, Series): by2 = df3["_by"] by2.name = self.by.name if is_dataframe_like(meta): df4 = df3.map_partitions(drop_columns, "_by", meta.columns.dtype) else: df4 = df3.drop("_by", axis=1) else: df4 = df3 by2 = self.by if convert_back_to_series: df4 = df4["__series__"].rename(self.obj.name) return df4, by2 @_deprecated_kwarg("axis") @derived_from(pd.core.groupby.GroupBy) def cumsum(self, axis=no_default, numeric_only=no_default): axis = self._normalize_axis(axis, "cumsum") if axis: if axis in (1, "columns") and isinstance(self, SeriesGroupBy): raise ValueError(f"No axis named {axis} for object type Series") return self.obj.cumsum(axis=axis) else: return self._cum_agg( "cumsum", chunk=M.cumsum, aggregate=M.add, initial=0, numeric_only=numeric_only, ) @_deprecated_kwarg("axis") @derived_from(pd.core.groupby.GroupBy) def cumprod(self, axis=no_default, numeric_only=no_default): axis = self._normalize_axis(axis, "cumprod") if axis: if axis in (1, "columns") and isinstance(self, SeriesGroupBy): raise ValueError(f"No axis named {axis} for object type Series") return self.obj.cumprod(axis=axis) else: return self._cum_agg( "cumprod", chunk=M.cumprod, aggregate=M.mul, initial=1, numeric_only=numeric_only, ) @_deprecated_kwarg("axis") @derived_from(pd.core.groupby.GroupBy) def cumcount(self, axis=no_default): return self._cum_agg( "cumcount", chunk=M.cumcount, aggregate=_cumcount_aggregate, initial=-1 ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) @numeric_only_deprecate_default def sum( self, split_every=None, split_out=1, shuffle_method=None, min_count=None, numeric_only=no_default, ): numeric_kwargs = get_numeric_only_kwargs(numeric_only) result = self._single_agg( func=M.sum, token="sum", split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, chunk_kwargs=numeric_kwargs, aggregate_kwargs=numeric_kwargs, ) if min_count: return result.where(self.count() >= min_count, other=np.nan) else: return result @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) @numeric_only_deprecate_default def prod( self, split_every=None, split_out=1, shuffle_method=None, min_count=None, numeric_only=no_default, ): numeric_kwargs = get_numeric_only_kwargs(numeric_only) result = self._single_agg( func=M.prod, token="prod", split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, chunk_kwargs=numeric_kwargs, aggregate_kwargs=numeric_kwargs, ) if min_count: return result.where(self.count() >= min_count, other=np.nan) else: return result @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) def min( self, split_every=None, split_out=1, shuffle_method=None, numeric_only=no_default, ): numeric_kwargs = get_numeric_only_kwargs(numeric_only) return self._single_agg( func=M.min, token="min", split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, chunk_kwargs=numeric_kwargs, aggregate_kwargs=numeric_kwargs, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) def max( self, split_every=None, split_out=1, shuffle_method=None, numeric_only=no_default, ): numeric_kwargs = get_numeric_only_kwargs(numeric_only) return self._single_agg( func=M.max, token="max", split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, chunk_kwargs=numeric_kwargs, aggregate_kwargs=numeric_kwargs, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.DataFrame) @numeric_only_deprecate_default def idxmin( self, split_every=None, split_out=1, shuffle_method=None, axis=no_default, skipna=True, numeric_only=no_default, ): if axis != no_default: warnings.warn( "`axis` parameter is deprecated and will be removed in a future version.", FutureWarning, ) if axis in (1, "columns"): raise NotImplementedError( f"The axis={axis} keyword is not implemented for groupby.idxmin" ) self._normalize_axis(axis, "idxmin") chunk_kwargs = dict(skipna=skipna) numeric_kwargs = get_numeric_only_kwargs(numeric_only) chunk_kwargs.update(numeric_kwargs) return self._single_agg( func=M.idxmin, token="idxmin", aggfunc=M.first, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, chunk_kwargs=chunk_kwargs, aggregate_kwargs=numeric_kwargs, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.DataFrame) @numeric_only_deprecate_default def idxmax( self, split_every=None, split_out=1, shuffle_method=None, axis=no_default, skipna=True, numeric_only=no_default, ): if axis != no_default: warnings.warn( "`axis` parameter is deprecated and will be removed in a future version.", FutureWarning, ) if axis in (1, "columns"): raise NotImplementedError( f"The axis={axis} keyword is not implemented for groupby.idxmax" ) self._normalize_axis(axis, "idxmax") chunk_kwargs = dict(skipna=skipna) numeric_kwargs = get_numeric_only_kwargs(numeric_only) chunk_kwargs.update(numeric_kwargs) return self._single_agg( func=M.idxmax, token="idxmax", aggfunc=M.first, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, chunk_kwargs=chunk_kwargs, aggregate_kwargs=numeric_kwargs, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) def count(self, split_every=None, split_out=1, shuffle_method=None): return self._single_agg( func=M.count, token="count", aggfunc=M.sum, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) @numeric_only_not_implemented def mean( self, split_every=None, split_out=1, shuffle_method=None, numeric_only=no_default, ): # We sometimes emit this warning ourselves. We ignore it here so users only see it once. with check_numeric_only_deprecation(): s = self.sum( split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, numeric_only=numeric_only, ) c = self.count( split_every=split_every, split_out=split_out, shuffle_method=shuffle_method ) if is_dataframe_like(s): c = c[s.columns] return s / c @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) def median( self, split_every=None, split_out=1, shuffle_method=None, numeric_only=no_default, ): if shuffle_method is False: raise ValueError( "In order to aggregate with 'median', you must use shuffling-based " "aggregation (e.g., shuffle='tasks')" ) shuffle_method = shuffle_method or _determine_split_out_shuffle(True, split_out) numeric_only_kwargs = get_numeric_only_kwargs(numeric_only) with check_numeric_only_deprecation(name="median"): meta = self._meta_nonempty.median(**numeric_only_kwargs) columns = meta.name if is_series_like(meta) else meta.columns by = self.by if isinstance(self.by, list) else [self.by] return _shuffle_aggregate( [self.obj] + by, token="non-agg", chunk=_non_agg_chunk, chunk_kwargs={ "key": columns, **self.observed, **self.dropna, }, aggregate=_groupby_aggregate, aggregate_kwargs={ "aggfunc": _median_aggregate, "levels": _determine_levels(self.by), **self.observed, **self.dropna, **numeric_only_kwargs, }, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, sort=self.sort, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) def size(self, split_every=None, split_out=1, shuffle_method=None): return self._single_agg( token="size", func=M.size, aggfunc=M.sum, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, ) @derived_from(pd.core.groupby.GroupBy) @numeric_only_not_implemented def var(self, ddof=1, split_every=None, split_out=1, numeric_only=no_default): if not PANDAS_GE_150 and numeric_only is not no_default: raise TypeError("numeric_only not supported for pandas < 1.5") levels = _determine_levels(self.by) result = aca( [self.obj, self.by] if not isinstance(self.by, list) else [self.obj] + self.by, chunk=_var_chunk, aggregate=_var_agg, combine=_var_combine, token=self._token_prefix + "var", aggregate_kwargs={ "ddof": ddof, "levels": levels, "numeric_only": numeric_only, **self.observed, **self.dropna, }, chunk_kwargs={"numeric_only": numeric_only, **self.observed, **self.dropna}, combine_kwargs={"levels": levels}, split_every=split_every, split_out=split_out, split_out_setup=split_out_on_index, sort=self.sort, ) if isinstance(self.obj, Series): result = result[result.columns[0]] if self._slice: result = result[self._slice] return result @derived_from(pd.core.groupby.GroupBy) @numeric_only_not_implemented def std(self, ddof=1, split_every=None, split_out=1, numeric_only=no_default): if not PANDAS_GE_150 and numeric_only is not no_default: raise TypeError("numeric_only not supported for pandas < 1.5") # We sometimes emit this warning ourselves. We ignore it here so users only see it once. with check_numeric_only_deprecation(): v = self.var( ddof, split_every=split_every, split_out=split_out, numeric_only=numeric_only, ) result = map_partitions(np.sqrt, v, meta=v) return result @derived_from(pd.DataFrame) def corr(self, ddof=1, split_every=None, split_out=1, numeric_only=no_default): """Groupby correlation: corr(X, Y) = cov(X, Y) / (std_x * std_y) """ if not PANDAS_GE_150 and numeric_only is not no_default: raise TypeError("numeric_only not supported for pandas < 1.5") return self.cov( split_every=split_every, split_out=split_out, std=True, numeric_only=numeric_only, ) @derived_from(pd.DataFrame) def cov( self, ddof=1, split_every=None, split_out=1, std=False, numeric_only=no_default ): """Groupby covariance is accomplished by 1. Computing intermediate values for sum, count, and the product of all columns: a b c -> a*a, a*b, b*b, b*c, c*c. 2. The values are then aggregated and the final covariance value is calculated: cov(X, Y) = X*Y - Xbar * Ybar When `std` is True calculate Correlation """ if not PANDAS_GE_150 and numeric_only is not no_default: raise TypeError("numeric_only not supported for pandas < 1.5") numeric_only_kwargs = get_numeric_only_kwargs(numeric_only) levels = _determine_levels(self.by) is_mask = any(is_series_like(s) for s in self.by) if self._slice: if is_mask: self.obj = self.obj[self._slice] else: sliced_plus = list(self._slice) + list(self.by) self.obj = self.obj[sliced_plus] result = aca( [self.obj, self.by] if not isinstance(self.by, list) else [self.obj] + self.by, chunk=_cov_chunk, aggregate=_cov_agg, combine=_cov_combine, token=self._token_prefix + "cov", aggregate_kwargs={"ddof": ddof, "levels": levels, "std": std}, combine_kwargs={"levels": levels}, chunk_kwargs=numeric_only_kwargs, split_every=split_every, split_out=split_out, split_out_setup=split_out_on_index, sort=self.sort, ) if isinstance(self.obj, Series): result = result[result.columns[0]] if self._slice: result = result[self._slice] return result @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) def first( self, split_every=None, split_out=1, shuffle_method=None, numeric_only=no_default, ): numeric_kwargs = get_numeric_only_kwargs(numeric_only) return self._single_agg( func=M.first, token="first", split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, chunk_kwargs=numeric_kwargs, aggregate_kwargs=numeric_kwargs, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.GroupBy) def last( self, split_every=None, split_out=1, shuffle_method=None, numeric_only=no_default, ): numeric_kwargs = get_numeric_only_kwargs(numeric_only) return self._single_agg( token="last", func=M.last, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, chunk_kwargs=numeric_kwargs, aggregate_kwargs=numeric_kwargs, ) @derived_from( pd.core.groupby.GroupBy, inconsistencies="If the group is not present, Dask will return an empty Series/DataFrame.", ) def get_group(self, key): token = self._token_prefix + "get_group" meta = self._meta.obj if is_dataframe_like(meta) and self._slice is not None: meta = meta[self._slice] columns = meta.columns if is_dataframe_like(meta) else meta.name return map_partitions( _groupby_get_group, self.obj, self.by, key, columns, meta=meta, token=token, ) @_deprecated_kwarg("shuffle", "shuffle_method") @_aggregate_docstring() def aggregate( self, arg=None, split_every=None, split_out=1, shuffle_method=None, **kwargs ): if split_out is None: warnings.warn( "split_out=None is deprecated, please use a positive integer, " "or allow the default of 1", category=FutureWarning, ) split_out = 1 shuffle_method = _determine_split_out_shuffle(shuffle_method, split_out) relabeling = None columns = None order = None column_projection = None if PANDAS_GE_140: if isinstance(self, DataFrameGroupBy): if arg is None: relabeling, arg, columns, order = reconstruct_func(arg, **kwargs) elif isinstance(self, SeriesGroupBy): relabeling = arg is None if relabeling: columns, arg = validate_func_kwargs(kwargs) if isinstance(self.obj, DataFrame): if isinstance(self.by, tuple) or np.isscalar(self.by): group_columns = {self.by} elif isinstance(self.by, list): group_columns = { i for i in self.by if isinstance(i, tuple) or np.isscalar(i) } else: group_columns = set() if self._slice: # pandas doesn't exclude the grouping column in a SeriesGroupBy # like df.groupby('a')['a'].agg(...) non_group_columns = self._slice if not isinstance(non_group_columns, list): non_group_columns = [non_group_columns] else: # NOTE: this step relies on the by normalization to replace # series with their name. non_group_columns = [ col for col in self.obj.columns if col not in group_columns ] spec = _normalize_spec(arg, non_group_columns) # Check if the aggregation involves implicit column projection if isinstance(arg, dict): column_projection = group_columns.union(arg.keys()).intersection( self.obj.columns ) elif isinstance(self.obj, Series): if isinstance(arg, (list, tuple, dict)): # implementation detail: if self.obj is a series, a pseudo column # None is used to denote the series itself. This pseudo column is # removed from the result columns before passing the spec along. spec = _normalize_spec({None: arg}, []) spec = [ (result_column, func, input_column) for ((_, result_column), func, input_column) in spec ] else: spec = _normalize_spec({None: arg}, []) spec = [ (self.obj.name, func, input_column) for (_, func, input_column) in spec ] else: raise ValueError(f"aggregate on unknown object {self.obj}") chunk_funcs, aggregate_funcs, finalizers = _build_agg_args(spec) if isinstance(self.by, (tuple, list)) and len(self.by) > 1: levels = list(range(len(self.by))) else: levels = 0 # Add an explicit `getitem` operation if the groupby # aggregation involves implicit column projection. # This makes it possible for the column-projection # to be pushed into the IO layer _obj = self.obj[list(column_projection)] if column_projection else self.obj if not isinstance(self.by, list): chunk_args = [_obj, self.by] else: chunk_args = [_obj] + self.by # If any of the agg funcs contain a "median", we *must* use the shuffle # implementation. has_median = any(s[1] in ("median", np.median) for s in spec) if has_median and not shuffle_method: raise ValueError( "In order to aggregate with 'median', you must use shuffling-based " "aggregation (e.g., shuffle='tasks')" ) if shuffle_method: # Shuffle-based aggregation # # This algorithm is more scalable than a tree reduction # for larger values of split_out. However, the shuffle # step requires that the result of `chunk` produces a # proper DataFrame type # If we have a median in the spec, we cannot do an initial # aggregation. if has_median: result = _shuffle_aggregate( chunk_args, chunk=_non_agg_chunk, chunk_kwargs={ "key": [ c for c in _obj.columns.tolist() if c not in group_columns ], **self.observed, **self.dropna, }, aggregate=_groupby_aggregate_spec, aggregate_kwargs={ "spec": arg, "levels": _determine_levels(self.by), **self.observed, **self.dropna, }, token="aggregate", split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, sort=self.sort, ) else: result = _shuffle_aggregate( chunk_args, chunk=_groupby_apply_funcs, chunk_kwargs={ "funcs": chunk_funcs, "sort": self.sort, **self.observed, **self.dropna, }, aggregate=_agg_finalize, aggregate_kwargs=dict( aggregate_funcs=aggregate_funcs, finalize_funcs=finalizers, level=levels, **self.observed, **self.dropna, ), token="aggregate", split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, sort=self.sort, ) else: # Check sort behavior if self.sort and split_out > 1: raise NotImplementedError( "Cannot guarantee sorted keys for `split_out>1` and `shuffle=False`" " Try using `shuffle=True` if you are grouping on a single column." " Otherwise, try using split_out=1, or grouping with sort=False." ) result = aca( chunk_args, chunk=_groupby_apply_funcs, chunk_kwargs=dict( funcs=chunk_funcs, sort=False, **self.observed, **self.dropna, ), combine=_groupby_apply_funcs, combine_kwargs=dict( funcs=aggregate_funcs, level=levels, sort=False, **self.observed, **self.dropna, ), aggregate=_agg_finalize, aggregate_kwargs=dict( aggregate_funcs=aggregate_funcs, finalize_funcs=finalizers, level=levels, **self.observed, **self.dropna, ), token="aggregate", split_every=split_every, split_out=split_out, split_out_setup=split_out_on_index, sort=self.sort, ) if relabeling and result is not None: if order is not None: result = result.iloc[:, order] result.columns = columns return result @insert_meta_param_description(pad=12) def apply(self, func, *args, **kwargs): """Parallel version of pandas GroupBy.apply This mimics the pandas version except for the following: 1. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. 2. Dask's GroupBy.apply is not appropriate for aggregations. For custom aggregations, use :class:`dask.dataframe.groupby.Aggregation`. .. warning:: Pandas' groupby-apply can be used to to apply arbitrary functions, including aggregations that result in one row per group. Dask's groupby-apply will apply ``func`` once on each group, doing a shuffle if needed, such that each group is contained in one partition. When ``func`` is a reduction, e.g., you'll end up with one row per group. To apply a custom aggregation with Dask, use :class:`dask.dataframe.groupby.Aggregation`. Parameters ---------- func: function Function to apply args, kwargs : Scalar, Delayed or object Arguments and keywords to pass to the function. $META Returns ------- applied : Series or DataFrame depending on columns keyword """ meta = kwargs.get("meta", no_default) if meta is no_default: with raise_on_meta_error(f"groupby.apply({funcname(func)})", udf=True): meta_args, meta_kwargs = _extract_meta((args, kwargs), nonempty=True) meta = self._meta_nonempty.apply(func, *meta_args, **meta_kwargs) msg = ( "`meta` is not specified, inferred from partial data. " "Please provide `meta` if the result is unexpected.\n" " Before: .apply(func)\n" " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n" " or: .apply(func, meta=('x', 'f8')) for series result" ) warnings.warn(msg, stacklevel=2) meta = make_meta(meta, parent_meta=self._meta.obj) # Validate self.by if isinstance(self.by, list) and any( isinstance(item, Series) for item in self.by ): raise NotImplementedError( "groupby-apply with a multiple Series is currently not supported" ) df = self.obj should_shuffle = not (df.known_divisions and df._contains_index_name(self.by)) if should_shuffle: df2, by = self._shuffle(meta) else: df2 = df by = self.by # Perform embarrassingly parallel groupby-apply kwargs["meta"] = meta df3 = map_partitions( _groupby_slice_apply, df2, by, self._slice, func, *args, token=funcname(func), group_keys=self.group_keys, **self.observed, **self.dropna, **kwargs, ) return df3 @insert_meta_param_description(pad=12) def transform(self, func, *args, **kwargs): """Parallel version of pandas GroupBy.transform This mimics the pandas version except for the following: 1. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. 2. Dask's GroupBy.transform is not appropriate for aggregations. For custom aggregations, use :class:`dask.dataframe.groupby.Aggregation`. .. warning:: Pandas' groupby-transform can be used to apply arbitrary functions, including aggregations that result in one row per group. Dask's groupby-transform will apply ``func`` once on each group, doing a shuffle if needed, such that each group is contained in one partition. When ``func`` is a reduction, e.g., you'll end up with one row per group. To apply a custom aggregation with Dask, use :class:`dask.dataframe.groupby.Aggregation`. Parameters ---------- func: function Function to apply args, kwargs : Scalar, Delayed or object Arguments and keywords to pass to the function. $META Returns ------- applied : Series or DataFrame depending on columns keyword """ meta = kwargs.get("meta", no_default) if meta is no_default: with raise_on_meta_error(f"groupby.transform({funcname(func)})", udf=True): meta_args, meta_kwargs = _extract_meta((args, kwargs), nonempty=True) meta = self._meta_nonempty.transform(func, *meta_args, **meta_kwargs) msg = ( "`meta` is not specified, inferred from partial data. " "Please provide `meta` if the result is unexpected.\n" " Before: .transform(func)\n" " After: .transform(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n" " or: .transform(func, meta=('x', 'f8')) for series result" ) warnings.warn(msg, stacklevel=2) meta = make_meta(meta, parent_meta=self._meta.obj) # Validate self.by if isinstance(self.by, list) and any( isinstance(item, Series) for item in self.by ): raise NotImplementedError( "groupby-transform with a multiple Series is currently not supported" ) df = self.obj should_shuffle = not (df.known_divisions and df._contains_index_name(self.by)) if should_shuffle: df2, by = self._shuffle(meta) else: df2 = df by = self.by # Perform embarrassingly parallel groupby-transform kwargs["meta"] = meta df3 = map_partitions( _groupby_slice_transform, df2, by, self._slice, func, *args, token=funcname(func), group_keys=self.group_keys, **self.observed, **self.dropna, **kwargs, ) if isinstance(self, DataFrameGroupBy): index_name = df3.index.name df3 = df3.reset_index().set_index(index_name or "index") df3.index = df3.index.rename(index_name) return df3 @insert_meta_param_description(pad=12) def shift( self, periods=1, freq=no_default, axis=no_default, fill_value=no_default, meta=no_default, ): """Parallel version of pandas GroupBy.shift This mimics the pandas version except for the following: If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. Parameters ---------- periods : Delayed, Scalar or int, default 1 Number of periods to shift. freq : Delayed, Scalar or str, optional Frequency string. axis : axis to shift, default 0 Shift direction. fill_value : Scalar, Delayed or object, optional The scalar value to use for newly introduced missing values. $META Returns ------- shifted : Series or DataFrame shifted within each group. Examples -------- >>> import dask >>> ddf = dask.datasets.timeseries(freq="1h") >>> result = ddf.groupby("name").shift(1, meta={"id": int, "x": float, "y": float}) """ if axis != no_default: warnings.warn( "`axis` parameter is deprecated and will be removed in a future version.", FutureWarning, ) axis = self._normalize_axis(axis, "shift") kwargs = {"periods": periods, "axis": axis} if freq is not no_default: kwargs.update({"freq": freq}) if fill_value is not no_default: kwargs.update({"fill_value": fill_value}) if meta is no_default: with raise_on_meta_error("groupby.shift()", udf=False): meta_kwargs = _extract_meta( kwargs, nonempty=True, ) with check_groupby_axis_deprecation(): meta = self._meta_nonempty.shift(**meta_kwargs) msg = ( "`meta` is not specified, inferred from partial data. " "Please provide `meta` if the result is unexpected.\n" " Before: .shift(1)\n" " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n" " or: .shift(1, meta=('x', 'f8')) for series result" ) warnings.warn(msg, stacklevel=2) meta = make_meta(meta, parent_meta=self._meta.obj) # Validate self.by if isinstance(self.by, list) and any( isinstance(item, Series) for item in self.by ): raise NotImplementedError( "groupby-shift with a multiple Series is currently not supported" ) df = self.obj should_shuffle = not (df.known_divisions and df._contains_index_name(self.by)) if should_shuffle: df2, by = self._shuffle(meta) else: df2 = df by = self.by # Perform embarrassingly parallel groupby-shift result = map_partitions( _groupby_slice_shift, df2, by, self._slice, should_shuffle, token="groupby-shift", group_keys=self.group_keys, meta=meta, **self.observed, **self.dropna, **kwargs, ) return result def rolling(self, window, min_periods=None, center=False, win_type=None, axis=0): """Provides rolling transformations. .. note:: Since MultiIndexes are not well supported in Dask, this method returns a dataframe with the same index as the original data. The groupby column is not added as the first level of the index like pandas does. This method works differently from other groupby methods. It does a groupby on each partition (plus some overlap). This means that the output has the same shape and number of partitions as the original. Parameters ---------- window : str, offset Size of the moving window. This is the number of observations used for calculating the statistic. Data must have a ``DatetimeIndex`` min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). center : boolean, default False Set the labels at the center of the window. win_type : string, default None Provide a window type. The recognized window types are identical to pandas. axis : int, default 0 Returns ------- a Rolling object on which to call a method to compute a statistic Examples -------- >>> import dask >>> ddf = dask.datasets.timeseries(freq="1h") >>> result = ddf.groupby("name").x.rolling('1D').max() """ from dask.dataframe.rolling import RollingGroupby if isinstance(window, Integral): raise ValueError( "Only time indexes are supported for rolling groupbys in dask dataframe. " "``window`` must be a ``freq`` (e.g. '1H')." ) if min_periods is not None: if not isinstance(min_periods, Integral): raise ValueError("min_periods must be an integer") if min_periods < 0: raise ValueError("min_periods must be >= 0") return RollingGroupby( self, window=window, min_periods=min_periods, center=center, win_type=win_type, axis=axis, ) def _normalize_axis(self, axis, method: str): if PANDAS_GE_210 and axis is not no_default: if axis in (0, "index"): warnings.warn( f"The 'axis' keyword in {type(self).__name__}.{method} is deprecated and will " "be removed in a future version. Call without passing 'axis' instead.", FutureWarning, ) else: warnings.warn( f"{type(self).__name__}.{method} with axis={axis} is deprecated and will be removed " "in a future version. Operate on the un-grouped DataFrame instead", FutureWarning, ) if axis is no_default: axis = 0 if axis in ("index", 1): warnings.warn( "Using axis=1 in GroupBy does not require grouping and will be removed " "entirely in a future version.", FutureWarning, ) return axis @_deprecated(message="Please use `ffill`/`bfill` or `fillna` without a GroupBy.") def fillna(self, value=None, method=None, limit=None, axis=no_default): """Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, default None Value to use to fill holes (e.g. 0). method : {'bfill', 'ffill', None}, default None Method to use for filling holes in reindexed Series. ffill: propagate last valid observation forward to next valid. bfill: use next valid observation to fill gap. axis : {0 or 'index', 1 or 'columns'} Axis along which to fill missing values. limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. Returns ------- Series or DataFrame Object with missing values filled See also -------- pandas.core.groupby.DataFrameGroupBy.fillna """ axis = self._normalize_axis(axis, "fillna") if not np.isscalar(value) and value is not None: raise NotImplementedError( "groupby-fillna with value=dict/Series/DataFrame is not supported" ) kwargs = dict(value=value, method=method, limit=limit, axis=axis) if PANDAS_GE_220: func = M.fillna kwargs.update(include_groups=False) else: func = _drop_apply kwargs.update(by=self.by, what="fillna") meta = self._meta_nonempty.apply(func, **kwargs) result = self.apply(func, meta=meta, **kwargs) if PANDAS_GE_150 and self.group_keys: return result.map_partitions(M.droplevel, self.by) return result @derived_from(pd.core.groupby.GroupBy) def ffill(self, limit=None): kwargs = dict(limit=limit) if PANDAS_GE_220: func = M.ffill kwargs.update(include_groups=False) else: func = _drop_apply kwargs.update(by=self.by, what="ffill") meta = self._meta_nonempty.apply(func, **kwargs) result = self.apply(func, meta=meta, **kwargs) if PANDAS_GE_150 and self.group_keys: return result.map_partitions(M.droplevel, self.by) return result @derived_from(pd.core.groupby.GroupBy) def bfill(self, limit=None): kwargs = dict(limit=limit) if PANDAS_GE_220: func = M.bfill kwargs.update(include_groups=False) else: func = _drop_apply kwargs.update(by=self.by, what="bfill") meta = self._meta_nonempty.apply(func, **kwargs) result = self.apply(func, meta=meta, **kwargs) if PANDAS_GE_150 and self.group_keys: return result.map_partitions(M.droplevel, self.by) return result class DataFrameGroupBy(_GroupBy): _token_prefix = "dataframe-groupby-" def __getitem__(self, key): with check_observed_deprecation(): if isinstance(key, list): g = DataFrameGroupBy( self.obj, by=self.by, slice=key, sort=self.sort, **self.dropna, **self.observed, ) else: g = SeriesGroupBy( self.obj, by=self.by, slice=key, sort=self.sort, **self.dropna, **self.observed, ) # Need a list otherwise pandas will warn/error if isinstance(key, tuple): key = list(key) g._meta = g._meta[key] return g def __dir__(self): return sorted( set( dir(type(self)) + list(self.__dict__) + list(filter(M.isidentifier, self.obj.columns)) ) ) def __getattr__(self, key): try: return self[key] except KeyError as e: raise AttributeError(e) from e def _all_numeric(self): """Are all columns that we're not grouping on numeric?""" numerics = self.obj._meta._get_numeric_data() # This computes a groupby but only on the empty meta post_group_columns = self._meta.count().columns return len(set(post_group_columns) - set(numerics.columns)) == 0
[docs] @_deprecated_kwarg("shuffle", "shuffle_method") @_aggregate_docstring(based_on="pd.core.groupby.DataFrameGroupBy.aggregate") def aggregate( self, arg=None, split_every=None, split_out=1, shuffle_method=None, **kwargs ): if arg == "size": return self.size() return super().aggregate( arg=arg, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, **kwargs, )
@_deprecated_kwarg("shuffle", "shuffle_method") @_aggregate_docstring(based_on="pd.core.groupby.DataFrameGroupBy.agg") @numeric_only_not_implemented def agg( self, arg=None, split_every=None, split_out=1, shuffle_method=None, **kwargs ): return self.aggregate( arg=arg, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, **kwargs, ) class SeriesGroupBy(_GroupBy): _token_prefix = "series-groupby-" def __init__(self, df, by=None, slice=None, observed=None, **kwargs): # for any non series object, raise pandas-compat error message # Hold off on setting observed by default: https://github.com/dask/dask/issues/6951 observed = {"observed": observed} if observed is not None else {} if isinstance(df, Series): if isinstance(by, Series): pass elif isinstance(by, list): if len(by) == 0: raise ValueError("No group keys passed!") non_series_items = [item for item in by if not isinstance(item, Series)] # raise error from pandas, if applicable df._meta.groupby(non_series_items, **observed) else: # raise error from pandas, if applicable df._meta.groupby(by, **observed) super().__init__(df, by=by, slice=slice, **observed, **kwargs)
[docs] @derived_from(pd.core.groupby.SeriesGroupBy) def nunique(self, split_every=None, split_out=1): """ Examples -------- >>> import pandas as pd >>> import dask.dataframe as dd >>> d = {'col1': [1, 2, 3, 4], 'col2': [5, 6, 7, 8]} >>> df = pd.DataFrame(data=d) >>> ddf = dd.from_pandas(df, 2) >>> ddf.groupby(['col1']).col2.nunique().compute() """ name = self._meta.obj.name levels = _determine_levels(self.by) if isinstance(self.obj, DataFrame): chunk = _nunique_df_chunk else: chunk = _nunique_series_chunk return aca( [self.obj, self.by] if not isinstance(self.by, list) else [self.obj] + self.by, chunk=chunk, aggregate=_nunique_df_aggregate, combine=_nunique_df_combine, token="series-groupby-nunique", chunk_kwargs={"levels": levels, "name": name}, aggregate_kwargs={"levels": levels, "name": name}, combine_kwargs={"levels": levels}, split_every=split_every, split_out=split_out, split_out_setup=split_out_on_index, sort=self.sort, )
[docs] @_deprecated_kwarg("shuffle", "shuffle_method") @_aggregate_docstring(based_on="pd.core.groupby.SeriesGroupBy.aggregate") def aggregate( self, arg=None, split_every=None, split_out=1, shuffle_method=None, **kwargs ): result = super().aggregate( arg=arg, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, **kwargs, ) if self._slice: try: result = result[self._slice] except KeyError: pass if ( arg is not None and not isinstance(arg, (list, dict)) and isinstance(result, DataFrame) ): result = result[result.columns[0]] return result
@_deprecated_kwarg("shuffle", "shuffle_method") @_aggregate_docstring(based_on="pd.core.groupby.SeriesGroupBy.agg") def agg( self, arg=None, split_every=None, split_out=1, shuffle_method=None, **kwargs ): return self.aggregate( arg=arg, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, **kwargs, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.SeriesGroupBy) def value_counts(self, split_every=None, split_out=1, shuffle_method=None): return self._single_agg( func=_value_counts, token="value_counts", aggfunc=_value_counts_aggregate, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, # in pandas 2.0, Series returned from value_counts have a name # different from original object, but here, column name should # still reflect the original object name columns=self._meta.apply(pd.Series).name, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.SeriesGroupBy) def unique(self, split_every=None, split_out=1, shuffle_method=None): name = self._meta.obj.name return self._single_agg( func=M.unique, token="unique", aggfunc=_unique_aggregate, aggregate_kwargs={"name": name}, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.SeriesGroupBy) def tail(self, n=5, split_every=None, split_out=1, shuffle_method=None): index_levels = len(self.by) if isinstance(self.by, list) else 1 return self._single_agg( func=_tail_chunk, token="tail", aggfunc=_tail_aggregate, meta=M.tail(self._meta_nonempty), chunk_kwargs={"n": n}, aggregate_kwargs={"n": n, "index_levels": index_levels}, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, ) @_deprecated_kwarg("shuffle", "shuffle_method") @derived_from(pd.core.groupby.SeriesGroupBy) def head(self, n=5, split_every=None, split_out=1, shuffle_method=None): index_levels = len(self.by) if isinstance(self.by, list) else 1 return self._single_agg( func=_head_chunk, token="head", aggfunc=_head_aggregate, meta=M.head(self._meta_nonempty), chunk_kwargs={"n": n}, aggregate_kwargs={"n": n, "index_levels": index_levels}, split_every=split_every, split_out=split_out, shuffle_method=shuffle_method, ) def _unique_aggregate(series_gb, name=None): data = {k: v.explode().unique() for k, v in series_gb} ret = type(series_gb.obj)(data, name=name) ret.index.names = series_gb.obj.index.names ret.index = ret.index.astype(series_gb.obj.index.dtype, copy=False) return ret def _value_counts(x, **kwargs): if not x.groups or all( pd.isna(key) for key in flatten(x.groups.keys(), container=tuple) ): return pd.Series(dtype=int) else: return x.value_counts(**kwargs) def _value_counts_aggregate(series_gb): data = {k: v.groupby(level=-1).sum() for k, v in series_gb} if not data: data = [pd.Series(index=series_gb.obj.index[:0], dtype="float64")] res = pd.concat(data, names=series_gb.obj.index.names) typed_levels = { i: res.index.levels[i].astype(series_gb.obj.index.levels[i].dtype) for i in range(len(res.index.levels)) } res.index = res.index.set_levels( typed_levels.values(), level=typed_levels.keys(), verify_integrity=False ) return res def _tail_chunk(series_gb, **kwargs): keys, groups = zip(*series_gb) if len(series_gb) else ((True,), (series_gb,)) return pd.concat([group.tail(**kwargs) for group in groups], keys=keys) def _tail_aggregate(series_gb, **kwargs): levels = kwargs.pop("index_levels") return series_gb.tail(**kwargs).droplevel(list(range(levels))) def _head_chunk(series_gb, **kwargs): keys, groups = zip(*series_gb) if len(series_gb) else ((True,), (series_gb,)) return pd.concat([group.head(**kwargs) for group in groups], keys=keys) def _head_aggregate(series_gb, **kwargs): levels = kwargs.pop("index_levels") return series_gb.head(**kwargs).droplevel(list(range(levels))) def _median_aggregate(series_gb, **kwargs): with check_numeric_only_deprecation(): return series_gb.median(**kwargs) def _shuffle_aggregate( args, chunk=None, aggregate=None, token=None, chunk_kwargs=None, aggregate_kwargs=None, split_every=None, split_out=1, sort=True, ignore_index=False, shuffle_method="tasks", ): """Shuffle-based groupby aggregation This algorithm may be more efficient than ACA for large ``split_out`` values (required for high-cardinality groupby indices), but it also requires the output of ``chunk`` to be a proper DataFrame object. Parameters ---------- args : Positional arguments for the `chunk` function. All `dask.dataframe` objects should be partitioned and indexed equivalently. chunk : function [block-per-arg] -> block Function to operate on each block of data aggregate : function concatenated-block -> block Function to operate on the concatenated result of chunk token : str, optional The name to use for the output keys. chunk_kwargs : dict, optional Keywords for the chunk function only. aggregate_kwargs : dict, optional Keywords for the aggregate function only. split_every : int, optional Number of partitions to aggregate into a shuffle partition. Defaults to eight, meaning that the initial partitions are repartitioned into groups of eight before the shuffle. Shuffling scales with the number of partitions, so it may be helpful to increase this number as a performance optimization, but only when the aggregated partition can comfortably fit in worker memory. split_out : int, optional Number of output partitions. ignore_index : bool, default False Whether the index can be ignored during the shuffle. sort : bool If allowed, sort the keys of the output aggregation. shuffle_method : str, default "tasks" Shuffle method to be used by ``DataFrame.shuffle``. """ if chunk_kwargs is None: chunk_kwargs = dict() if aggregate_kwargs is None: aggregate_kwargs = dict() if not isinstance(args, (tuple, list)): args = [args] dfs = [arg for arg in args if isinstance(arg, _Frame)] npartitions = {arg.npartitions for arg in dfs} if len(npartitions) > 1: raise ValueError("All arguments must have same number of partitions") npartitions = npartitions.pop() if split_every is None: split_every = 8 elif split_every is False: split_every = npartitions elif split_every < 1 or not isinstance(split_every, Integral): raise ValueError("split_every must be an integer >= 1") # Shuffle-based groupby aggregation. N.B. we have to use `_meta_nonempty` # as some chunk aggregation functions depend on the index having values to # determine `group_keys` behavior. chunk_name = f"{token or funcname(chunk)}-chunk" chunked = map_partitions( chunk, *args, meta=chunk( *[arg._meta_nonempty if isinstance(arg, _Frame) else arg for arg in args], **chunk_kwargs, ), token=chunk_name, **chunk_kwargs, ) if is_series_like(chunked): # Temporarily convert series to dataframe for shuffle series_name = chunked._meta.name chunked = chunked.to_frame("__series__") convert_back_to_series = True else: series_name = None convert_back_to_series = False shuffle_npartitions = max( chunked.npartitions // split_every, split_out, ) # Handle sort kwarg if sort is not None: aggregate_kwargs = aggregate_kwargs or {} aggregate_kwargs["sort"] = sort if sort is None and split_out > 1: idx = set(chunked._meta.columns) - set(chunked._meta.reset_index().columns) if len(idx) > 1: warnings.warn( "In the future, `sort` for groupby operations will default to `True`" " to match the behavior of pandas. However, `sort=True` can have " " significant performance implications when `split_out>1`. To avoid " " global data shuffling, set `sort=False`.", FutureWarning, ) # Perform global sort or shuffle if sort and split_out > 1: cols = set(chunked.columns) chunked = chunked.reset_index() index_cols = sorted(set(chunked.columns) - cols) if len(index_cols) > 1: # Cannot use `set_index` for multi-column sort result = chunked.sort_values( index_cols, npartitions=shuffle_npartitions, shuffle_method=shuffle_method, ).map_partitions( M.set_index, index_cols, meta=chunked._meta.set_index(list(index_cols)), enforce_metadata=False, ) else: result = chunked.set_index( index_cols, npartitions=shuffle_npartitions, shuffle_method=shuffle_method, ) else: result = chunked.shuffle( chunked.index, ignore_index=ignore_index, npartitions=shuffle_npartitions, shuffle_method=shuffle_method, ) # Aggregate result = result.map_partitions(aggregate, **aggregate_kwargs) if convert_back_to_series: result = result["__series__"].rename(series_name) if split_out < shuffle_npartitions: return result.repartition(npartitions=split_out) return result