dask.array.einsum
dask.array.einsum¶
- dask.array.einsum(subscripts, *operands, out=None, dtype=None, order='K', casting='safe', optimize=False)[source]¶
This docstring was copied from numpy.einsum.
Some inconsistencies with the Dask version may exist.
Dask added an additional keyword-only argument
split_every
.- split_every: int >= 2 or dict(axis: int), optional
Determines the depth of the recursive aggregation. Defaults to
None
which would let dask heuristically decide a good default.
Evaluates the Einstein summation convention on the operands.
Using the Einstein summation convention, many common multi-dimensional, linear algebraic array operations can be represented in a simple fashion. In implicit mode einsum computes these values.
In explicit mode, einsum provides further flexibility to compute other array operations that might not be considered classical Einstein summation operations, by disabling, or forcing summation over specified subscript labels.
See the notes and examples for clarification.
- Parameters
- subscriptsstr
Specifies the subscripts for summation as comma separated list of subscript labels. An implicit (classical Einstein summation) calculation is performed unless the explicit indicator ‘->’ is included as well as subscript labels of the precise output form.
- operandslist of array_like
These are the arrays for the operation.
- outndarray, optional (Not supported in Dask)
If provided, the calculation is done into this array.
- dtype{data-type, None}, optional
If provided, forces the calculation to use the data type specified. Note that you may have to also give a more liberal casting parameter to allow the conversions. Default is None.
- order{‘C’, ‘F’, ‘A’, ‘K’}, optional
Controls the memory layout of the output. ‘C’ means it should be C contiguous. ‘F’ means it should be Fortran contiguous, ‘A’ means it should be ‘F’ if the inputs are all ‘F’, ‘C’ otherwise. ‘K’ means it should be as close to the layout as the inputs as is possible, including arbitrarily permuted axes. Default is ‘K’.
- casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
Controls what kind of data casting may occur. Setting this to ‘unsafe’ is not recommended, as it can adversely affect accumulations.
‘no’ means the data types should not be cast at all.
‘equiv’ means only byte-order changes are allowed.
‘safe’ means only casts which can preserve values are allowed.
‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
‘unsafe’ means any data conversions may be done.
Default is ‘safe’.
- optimize{False, True, ‘greedy’, ‘optimal’}, optional
Controls if intermediate optimization should occur. No optimization will occur if False and True will default to the ‘greedy’ algorithm. Also accepts an explicit contraction list from the
np.einsum_path
function. Seenp.einsum_path
for more details. Defaults to False.
- Returns
- outputndarray
The calculation based on the Einstein summation convention.
See also
einsum_path
,dot
,inner
,outer
,tensordot
,linalg.multi_dot
einops
similar verbose interface is provided by einops package to cover additional operations: transpose, reshape/flatten, repeat/tile, squeeze/unsqueeze and reductions.
opt_einsum
opt_einsum optimizes contraction order for einsum-like expressions in backend-agnostic manner.
Notes
New in version 1.6.0.
The Einstein summation convention can be used to compute many multi-dimensional, linear algebraic array operations. einsum provides a succinct way of representing these.
A non-exhaustive list of these operations, which can be computed by einsum, is shown below along with examples:
Trace of an array,
numpy.trace()
.Return a diagonal,
numpy.diag()
.Array axis summations,
numpy.sum()
.Transpositions and permutations,
numpy.transpose()
.Matrix multiplication and dot product,
numpy.matmul()
numpy.dot()
.Vector inner and outer products,
numpy.inner()
numpy.outer()
.Broadcasting, element-wise and scalar multiplication,
numpy.multiply()
.Tensor contractions,
numpy.tensordot()
.Chained array operations, in efficient calculation order,
numpy.einsum_path()
.
The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of the corresponding operand. Whenever a label is repeated it is summed, so
np.einsum('i,i', a, b)
is equivalent tonp.inner(a,b)
. If a label appears only once, it is not summed, sonp.einsum('i', a)
produces a view ofa
with no changes. A further examplenp.einsum('ij,jk', a, b)
describes traditional matrix multiplication and is equivalent tonp.matmul(a,b)
. Repeated subscript labels in one operand take the diagonal. For example,np.einsum('ii', a)
is equivalent tonp.trace(a)
.In implicit mode, the chosen subscripts are important since the axes of the output are reordered alphabetically. This means that
np.einsum('ij', a)
doesn’t affect a 2D array, whilenp.einsum('ji', a)
takes its transpose. Additionally,np.einsum('ij,jk', a, b)
returns a matrix multiplication, while,np.einsum('ij,jh', a, b)
returns the transpose of the multiplication since subscript ‘h’ precedes subscript ‘i’.In explicit mode the output can be directly controlled by specifying output subscript labels. This requires the identifier ‘->’ as well as the list of output subscript labels. This feature increases the flexibility of the function since summing can be disabled or forced when required. The call
np.einsum('i->', a)
is likenp.sum(a, axis=-1)
, andnp.einsum('ii->i', a)
is likenp.diag(a)
. The difference is that einsum does not allow broadcasting by default. Additionallynp.einsum('ij,jh->ih', a, b)
directly specifies the order of the output subscript labels and therefore returns matrix multiplication, unlike the example above in implicit mode.To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an ellipsis to the left of each term, like
np.einsum('...ii->...i', a)
. To take the trace along the first and last axes, you can donp.einsum('i...i', a)
, or to do a matrix-matrix product with the left-most indices instead of rightmost, one can donp.einsum('ij...,jk...->ik...', a, b)
.When there is only one operand, no axes are summed, and no output parameter is provided, a view into the operand is returned instead of a new array. Thus, taking the diagonal as
np.einsum('ii->i', a)
produces a view (changed in version 1.10.0).einsum also provides an alternative way to provide the subscripts and operands as
einsum(op0, sublist0, op1, sublist1, ..., [sublistout])
. If the output shape is not provided in this format einsum will be calculated in implicit mode, otherwise it will be performed explicitly. The examples below have corresponding einsum calls with the two parameter methods.New in version 1.10.0.
Views returned from einsum are now writeable whenever the input array is writeable. For example,
np.einsum('ijk...->kji...', a)
will now have the same effect asnp.swapaxes(a, 0, 2)
andnp.einsum('ii->i', a)
will return a writeable view of the diagonal of a 2D array.New in version 1.12.0.
Added the
optimize
argument which will optimize the contraction order of an einsum expression. For a contraction with three or more operands this can greatly increase the computational efficiency at the cost of a larger memory footprint during computation.Typically a ‘greedy’ algorithm is applied which empirical tests have shown returns the optimal path in the majority of cases. In some cases ‘optimal’ will return the superlative path through a more expensive, exhaustive search. For iterative calculations it may be advisable to calculate the optimal path once and reuse that path by supplying it as an argument. An example is given below.
See
numpy.einsum_path()
for more details.Examples
>>> a = np.arange(25).reshape(5,5) >>> b = np.arange(5) >>> c = np.arange(6).reshape(2,3)
Trace of a matrix:
>>> np.einsum('ii', a) 60 >>> np.einsum(a, [0,0]) 60 >>> np.trace(a) 60
Extract the diagonal (requires explicit form):
>>> np.einsum('ii->i', a) array([ 0, 6, 12, 18, 24]) >>> np.einsum(a, [0,0], [0]) array([ 0, 6, 12, 18, 24]) >>> np.diag(a) array([ 0, 6, 12, 18, 24])
Sum over an axis (requires explicit form):
>>> np.einsum('ij->i', a) array([ 10, 35, 60, 85, 110]) >>> np.einsum(a, [0,1], [0]) array([ 10, 35, 60, 85, 110]) >>> np.sum(a, axis=1) array([ 10, 35, 60, 85, 110])
For higher dimensional arrays summing a single axis can be done with ellipsis:
>>> np.einsum('...j->...', a) array([ 10, 35, 60, 85, 110]) >>> np.einsum(a, [Ellipsis,1], [Ellipsis]) array([ 10, 35, 60, 85, 110])
Compute a matrix transpose, or reorder any number of axes:
>>> np.einsum('ji', c) array([[0, 3], [1, 4], [2, 5]]) >>> np.einsum('ij->ji', c) array([[0, 3], [1, 4], [2, 5]]) >>> np.einsum(c, [1,0]) array([[0, 3], [1, 4], [2, 5]]) >>> np.transpose(c) array([[0, 3], [1, 4], [2, 5]])
Vector inner products:
>>> np.einsum('i,i', b, b) 30 >>> np.einsum(b, [0], b, [0]) 30 >>> np.inner(b,b) 30
Matrix vector multiplication:
>>> np.einsum('ij,j', a, b) array([ 30, 80, 130, 180, 230]) >>> np.einsum(a, [0,1], b, [1]) array([ 30, 80, 130, 180, 230]) >>> np.dot(a, b) array([ 30, 80, 130, 180, 230]) >>> np.einsum('...j,j', a, b) array([ 30, 80, 130, 180, 230])
Broadcasting and scalar multiplication:
>>> np.einsum('..., ...', 3, c) array([[ 0, 3, 6], [ 9, 12, 15]]) >>> np.einsum(',ij', 3, c) array([[ 0, 3, 6], [ 9, 12, 15]]) >>> np.einsum(3, [Ellipsis], c, [Ellipsis]) array([[ 0, 3, 6], [ 9, 12, 15]]) >>> np.multiply(3, c) array([[ 0, 3, 6], [ 9, 12, 15]])
Vector outer product:
>>> np.einsum('i,j', np.arange(2)+1, b) array([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]]) >>> np.einsum(np.arange(2)+1, [0], b, [1]) array([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]]) >>> np.outer(np.arange(2)+1, b) array([[0, 1, 2, 3, 4], [0, 2, 4, 6, 8]])
Tensor contraction:
>>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> np.einsum('ijk,jil->kl', a, b) array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> np.tensordot(a,b, axes=([1,0],[0,1])) array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]])
Writeable returned arrays (since version 1.10.0):
>>> a = np.zeros((3, 3)) >>> np.einsum('ii->i', a)[:] = 1 >>> a array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])
Example of ellipsis use:
>>> a = np.arange(6).reshape((3,2)) >>> b = np.arange(12).reshape((4,3)) >>> np.einsum('ki,jk->ij', a, b) array([[10, 28, 46, 64], [13, 40, 67, 94]]) >>> np.einsum('ki,...k->i...', a, b) array([[10, 28, 46, 64], [13, 40, 67, 94]]) >>> np.einsum('k...,jk', a, b) array([[10, 28, 46, 64], [13, 40, 67, 94]])
Chained array operations. For more complicated contractions, speed ups might be achieved by repeatedly computing a ‘greedy’ path or pre-computing the ‘optimal’ path and repeatedly applying it, using an einsum_path insertion (since version 1.12.0). Performance improvements can be particularly significant with larger arrays:
>>> a = np.ones(64).reshape(2,4,8)
Basic einsum: ~1520ms (benchmarked on 3.1GHz Intel i5.)
>>> for iteration in range(500): ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
Sub-optimal einsum (due to repeated path calculation time): ~330ms
>>> for iteration in range(500): ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
Greedy einsum (faster optimal path approximation): ~160ms
>>> for iteration in range(500): ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
Optimal einsum (best usage pattern in some use cases): ~110ms
>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0] >>> for iteration in range(500): ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)